Reaction forces of singular pendulum
DOI:
https://doi.org/10.21638/spbu01.2022.209Abstract
Various behavior types of reaction forces and Lagrange multipliers for the case of mechanical systems with configuration space singularities are studied in this paper. The motion of a one-dimensional double pendulum (or a singular pendulum) with a transversal singular point or a first order tangency singular point is considered. Properties of the configuration space of singular pendulum depends on the constraint line which the free vertex of the double pendulum moves along. Configuration space of singular pendulum could be represented by two smooth curves on a torus without common points, two transversely intersecting smooth curves or two curves with first-order tangency. In order to study the pendulum motion, the reaction forces on a two-dimensional torus are found. The expressions for the reaction forces are obtained analytically in angular coordinates. In the case of a transverse intersection it is proved that the reaction forces must be zero at the singular point. In the case of a first-order tangency singularity, the reaction forces are nonzero at the singular point. The Lagrange multiplier which depends on the motion along the ellipse becomes unlimited near to the singular point. Two mechanisms with a different type of singular points in the configuration space are described: a nonsmooth singular pendulum and a broken singular pendulum. There are no smooth regular curves passing through a singular point in the configuration spaces of these mechanical systems. In the case of nonsmooth singular pendulum, the Lagrange multiplier which depends on the motion along the ellipse becomes undefined when the singular point is passed. In the case of broken singular pendulum, the Lagrange multiplier makes a jump from a finite value to an infinite one.Keywords:
singular point, holonomic constraint, Lagrange multipliers
Downloads
Download data is not yet available.
References
Литература
1. Mukharlyamov R.G., Tuge D.C. Stabilization of redundantly constrained dynamic system. Discrete and Continuous Models and Applied Computational Science 1 (2015).
2. Mukharlyamov R. G., Deressa C. T. Dynamic equations of controlled Mechanical system with redundant holonomic constraints. Вестник Казанского технологического университета 17 (11) (2014).
3. Wojtyra M., Fr¸aczek J. Solvability of reactions in rigid multibody systems with redundant nonholonomic constraints. Multibody Syst. Dyn. 30, 153–171 (2013). https://doi.org/10.1007/s11044-013-9352-0
4. Flores P., Pereira R., Machado M., Seabra E. Investigation on the Baumgarte stabilization method for dynamic analysis of constrained multibody systems. Proceedings of EUCOMES 08. Dordrecht, Springer, 305–312 (2009).
5. Зегжда С.А., Солтаханов Ш.С., Юшков М.П. Уравнения движения неголономных систем и вариационные принципы механики. Новый класс задач управления. Москва, Физматлит (2005).
6. Поляхов Н.Н., Зегжда С.А., Юшков М.П. Теоретическая механика. Москва, Юрайт (2015).
7. Бурьян С.Н. Особенности движения маятника с сингулярным конфигурационным пространством. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 4 (62), вып. 4, 541–551 (2017). https://doi.org/10.21638/11701/spbu01.2017.402
8. Burian S.N., Kalnitsky V. S. On the motion of one-dimensional double pendulum. AIP Conference Proceedings 1959, 030004 (2018). https://doi.org/10.1063/1.5034584
9. Бурьян С.Н. Особенности динамики прямолинейного движения механизма Дарбу. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 5 (63), вып. 4, 658– 669 (2018). https://doi.org/10.21638/11701/spbu01.2018.412
References
1. Mukharlyamov R.G., Tuge D.C. Stabilization of redundantly constrained dynamic system. Discrete and Continuous Models and Applied Computational Science 1 (2015).
2. Mukharlyamov R. G., Deressa C. T. Dynamic equations of controlled Mechanical system with redundant holonomic constraints. Bulletin of the Kazan Technological University 17 (11) (2014).
3. Wojtyra M., Fr¸aczek J. Solvability of reactions in rigid multibody systems with redundant nonholonomic constraints. Multibody Syst. Dyn. 30, 153–171 (2013). https://doi.org/10.1007/s11044- 013-9352-0
4. Flores P., Pereira R., Machado M., Seabra E. Investigation on the Baumgarte stabilization method for dynamic analysis of constrained multibody systems. In: Proceedings of EUCOMES 08. Dordrecht, Springer, 305–312 (2009).
5. Zegzhda S.A., Soltakhanov Sh. S., Yushkov M.P. Equations of motion of nonholonomic systems and variational principles of mechanics. New class of control problems. Moscow, Fizmatlit Publ. (2005). (In Russian)
6. Polyakhov N.N., Zegzhda S.А., Yushkov M.P. Theoretical mechanics. Moscow, Iurait Publ. (2015). (In Russian)
7. Burian S.N. Behaviour of the pendulum with a singular configuration space. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 4 (62), iss. 4, 541–551 (2017). https://doi.org/10.21638/11701/spbu01.2017.402 (In Russian)
8. Burian S.N., Kalnitsky V. S. On the motion of one-dimensional double pendulum. AIP Conference Proceedings 1959, 030004 (2018). https://doi.org/10.1063/1.5034584
9. Burian S. N. Specificity of the Darboux mechanism rectilinear motion. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 5 (63), iss. 4, 658–669 (2018). https://doi.org/10.21638/11701/spbu01.2018.412 (In Russian)
Downloads
Published
2022-07-06
How to Cite
Burian, S. N. (2022). Reaction forces of singular pendulum. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(2), 278–293. https://doi.org/10.21638/spbu01.2022.209
Issue
Section
Mechanics
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.