Modeling of state-to-state oxygen kinetics behind reflected shock waves

Authors

  • Denis S. Kravchenko St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Elena V. Kustova St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Maksim Yu. Melnik St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2022.304

Abstract

A coupled problem of gasdynamics, vibrational relaxation, and dissociation in the flow of oxygen behind reflected shock waves is studied. The detailed state-to-state kinetic approach is used, which is based on a coupled solution of the momentum and energy conservation equations with the balance equations for molecular vibrational state populations and concentrations of oxygen atoms. Initial conditions corresponding to recent experiments in shock tubes are considered. For different models of physicochemical processes, a comparison is made with experimental data; varying the model parameters yields satisfactory agreement of all gas-dynamic parameters with the measured ones. The key feature of the proposed approach is the allowance for partial vibrational-chemical relaxation in the time interval between the incident and reflected shock waves. When relaxation between the shocks is not frozen, the reflected shock wave propagates through a vibrationally nonequilibrium gas, which significantly affects kinetics and gas dynamics. Accounting for partial relaxation ensures good agreement between the pressure calculated behind the front of the reflected shock wave and the pressure measured in the experiment. On the other hand, comparison with the vibrational temperature calculated indirectly from spectroscopic experimental data under the assumption of frozen relaxation shows noticeable differences near the shock wave front. We conclude that the technique for extracting gas-dynamic parameters fromspectroscopic data has to be improved by taking into account vibrational excitation before the reflected shock wave.

Keywords:

vibrational relaxation, dissociation, state-to-state kinetics, oxygen, reflected shock wave

Downloads

Download data is not yet available.
 

References

Литература

1. Нагнибеда Е.А., Кустова Е.В. Кинетическая теория процессов переноса и релаксации в потоках неравновесных реагирующих газов. Санкт-Петербург, Изд-во С.-Петерб. ун-та (2003).

2. Campoli L., Kunova O., Kustova E., Melnik M. Models validation and code profiling in state-to-state simulations of shock heated air flows. Acta Astronautica 175, 493-509 (2020). https://doi.org/10.1016/j.actaastro.2020.06.008

3. Gimelshein S.F., Wysong I.J., Fangman A.J., Andrienko D.A., Kunova O.V., Kustova E.V., Garbacz C., Fossati M., Hanquist K. Kinetic and Continuum Modeling of High-Temperature Oxygen and Nitrogen Binary Mixtures. J. Thermophys. Heat Transf. 36 (2), 399-418 (2022). https://doi.org/10.2514/1.T6258

4. Мишина А.И., Кустова Е.В. Пространственно однородная релаксация молекул CO с учетом резонансных VE-обменов. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 4 (62), вып. 2, 310-322 (2017). https://doi.org/10.21638/11701/spbu01.2017.215

5. Кунова О.В., Кустова Е.В., Мельник М.Ю., Савельев А.С. Валидация моделей по уровневой кинетики кислорода за фронтом ударнойволны. Физико-химическая кинетика в газовой динамике 19 (3) (2018). http://doi.org/10.33257/PhChGD.19.3.765

6. Gimelshein S.F. Particle Modeling of Reflected Shock Waves. J. Thermophys. Heat Transf. 35 (2), 362-371 (2021). https://doi.org/10.2514/1.T6103

7. Алексеев И.В., Кустова Е.В. Численное моделирование ударнойволны в вязком углекислом газе методом конечных объемов. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 7 (65), вып. 3, 500-510 (2020). https://doi.org/10.21638/spbu01.2020.312

8. Ibraguimova L.B., Sergievskaya A.L., Levashov V.Yu., Shatalov O.P., Tunik Yu.V., Zabelinskii I. E. Investigation of oxygen dissociation and vibrational relaxation at temperatures 4000-10800 K.J. Chem. Phys. 139, 034317 (2013). https://doi.org/10.1063/1.4813070

9. Luo H., Sebasti˜ao I.B., Alexeenko A.A., Macheret S.O. Classical impulsive model for dissociation of diatomic molecules in direct simulation Monte Carlo. Phys. Rev. Fluids 3, 113401 (2018). https://doi.org/10.1103/PhysRevFluids.3.113401

10. Gimelshein S.F., Wysong I.J., Bykova N.G., Shatalov O.P., Zabelinskii I.E. Improved Analysis of O2 Ultraviolet Absorption Spectra Under Nonequilibrium Shock Conditions. AIAA Journal 58 (10), 4451-4460 (2020). https://doi.org/10.2514/1.J058961

11. Streicher J.W., Krish A., Hanson R.K. Coupled vibration-dissociation time-histories and rate measurements in shock-heated, nondilute O2 and O2 - Ar mixtures from 6000 to 14000 K. Phys. Fluids 33, 056107 (2021). https://doi.org/10.1063/5.0048059

12. Schwartz R.N., Slawsky Z.I., Herzfeld K.F. Calculation of vibrational relaxation times in gases. J. Chem. Phys. 20 (10), 1591-1599 (1952). https://doi.org/10.1063/1.1700221

13. Adamovich I., Macheret S., Rich J., Treanor C. Vibrational energy transfer rates using a forced harmonic oscillator model. J. Thermophys. Heat Transf. 12 (1), 57-65 (1998). https://doi.org/10.2514/2.6302

14. Marrone P., Treanor C. Chemical relaxation with preferential dissociation from excited vibrational levels. Phys. Fluids 6 (9), 1215-1221 (1963). https://doi.org/10.1063/1.1706888

15. Kunova O., Kustova E., Savelev A. Generalized Treanor - Marrone model for state-specific dissociation rate coefficients. Chemical Physics Letter 659, 80-87 (2016). http://dx.doi.org/10.1016/j.cplett.2016.07.006

16. Погосбекян М.Ю., Сергиевская А.Л. Моделирование реакции диссоциации кислорода в термически неравновесных условиях: модели, траекторные расчеты, эксперимент. Химическая физика 37 (4), 20-31 (2018). https://doi.org/10.7868/S0207401X18040039

17. Park C., Howe J.T., Jaffe R.L., Candler G.V. Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries. J. Thermophys. Heat Tran. 8 (1), 9-23 (1994). https://doi.org/10.2514/3.496

18. Adamovich I. Three-dimensional analytic probabilities of coupled vibrational-rotational translational energy transfer for DSMC modeling of nonequilibrium flows. Phys. Fluids 26 (4), 046102 (2014). https://doi.org/10.1063/1.4872336

References

1. Nagnibeda E.A., Kustova E.V. Kineticheskaja teorija processov perenosa i relaksacii v potokah neravnovesnyh reagirujushhih gazov. St Petersburg, St Petersburg University Press (2009). (In Russian) [Eng. transl.: Nagnibeda E., Kustova E. Nonequilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes. In Ser.: Heat and Mass Transfer. Berlin, Heidelberg, Springer-Verlag (2009)].

2. Campoli L., Kunova O., Kustova E., Melnik M. Models validation and code profiling in state-to-state simulations of shock heated air flows. Acta Astronautica 175, 493-509 (2020). https://doi.org/10.1016/j.actaastro.2020.06.008

3. Gimelshein S.F., Wysong I.J., Fangman A.J., Andrienko D.A., Kunova O.V., Kustova E.V., Garbacz C., Fossati M., Hanquist K. Kinetic and Continuum Modeling of High-Temperature Oxygen and Nitrogen Binary Mixtures. J. Thermophys. Heat Transf. 36 (2), 399-418 (2022). https://doi.org/10.2514/1.T6258

4. Mishina A.I., Kustova E.V. Spatially homogeneous relaxation of CO molecules withresonant VE transitions. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 4 (62), iss. 2, 310-322 (2017). https://doi.org/10.21638/11701/spbu01.2017.215 (In Russian) [Eng. transl.: Vestnik St Petersb. Univ. Math. 50, 188-197 (2017). https://doi.org/10.3103/S1063454117020108].

5. Kunova O.V., Kustova E.V., Melnik M.Yu., Savelev A.S. Validation of models of stateto-state oxygen kinetics behind shock waves Phys. Chem. Kinetics Gas Dynam. 19 (3) (2018). http://doi.org/10.33257/PhChGD.19.3.765 (In Russian)

6. Gimelshein S.F. Particle Modeling of Reflected Shock Waves. J. Thermophys. Heat Transf. 35 (2), 362-371 (2021). https://doi.org/10.2514/1.T6103

7. Alekseev I.V., Kustova E.V. Numerical simulations of shockwaves in viscous carbon dioxide flows using finite volume method. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 7 (65), iss. 3, 500-510 (2020). https://doi.org/10.21638/spbu01.2020.312 (In Russian) [Eng. transl.: Vestnik St Petersb. Univ. Math. 53, 344-350 (2020). https://doi.org/10.1134/S1063454120030024].

8. Ibraguimova L.B., Sergievskaya A.L., Levashov V.Yu., Shatalov O.P., Tunik Yu.V., Zabelinskii I. E. Investigation of oxygen dissociation and vibrational relaxation at temperatures 4000-10800 K.J. Chem. Phys. 139, 034317 (2013). https://doi.org/10.1063/1.4813070

9. Luo H., Sebasti˜ao I.B., Alexeenko A.A., Macheret S.O. Classical impulsive model for dissociation of diatomic molecules in direct simulation Monte Carlo. Phys. Rev. Fluids 3, 113401 (2018). https://doi.org/10.1103/PhysRevFluids.3.113401

10. Gimelshein S.F., Wysong I.J., Bykova N.G., Shatalov O.P., Zabelinskii I.E. Improved Analysis of O2 Ultraviolet Absorption Spectra Under Nonequilibrium Shock Conditions. AIAA Journal 58 (10), 4451-4460 (2020). https://doi.org/10.2514/1.J058961

11. Streicher J.W., Krish A., Hanson R.K. Coupled vibration-dissociation time-histories and rate measurements in shock-heated, nondilute O2 and O2 - Ar mixtures from 6000 to 14000 K. Phys. Fluids 33, 056107 (2021). https://doi.org/10.1063/5.0048059

12. Schwartz R.N., Slawsky Z.I., Herzfeld K.F. Calculation of vibrational relaxation times in gases. J. Chem. Phys. 20 (10), 1591-1599 (1952). https://doi.org/10.1063/1.1700221

13. Adamovich I., Macheret S., Rich J., Treanor C. Vibrational energy transfer rates using a forced harmonic oscillator model. J. Thermophys. Heat Transf. 12 (1), 57-65 (1998). https://doi.org/10.2514/2.6302

14. Marrone P., Treanor C. Chemical relaxation with preferential dissociation from excited vibrational levels. Phys. Fluids 6 (9), 1215-1221 (1963). https://doi.org/10.1063/1.1706888

15. Kunova O., Kustova E., Savelev A. Generalized Treanor - Marrone model for state-specific dissociation rate coefficients. Chemical Physics Letter 659, 80-87 (2016). http://dx.doi.org/10.1016/j.cplett.2016.07.006

16. Pogosbekyan M., Sergievskaya A. Simulation of the oxygen dissociation reaction under thermally nonequilibrium conditions: models, trajectory calculations, and the experiment. Himicheskaja fizika 37 (4), 20-31 (2018). https://doi.org/10.7868/S0207401X18040039 (In Russian) [Eng. transl.: Russ. J. Phys. Chem. B 12, 208-218 (2018). https://doi.org/10.1134/S1990793118020239].

17. Park C., Howe J.T., Jaffe R.L., Candler G.V. Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries. J. Thermophys. Heat Tran. 8 (1), 9-23 (1994). https://doi.org/10.2514/3.496

18. Adamovich I. Three-dimensional analytic probabilities of coupled vibrational-rotational translational energy transfer for DSMC modeling of nonequilibrium flows. Phys. Fluids 26 (4), 046102 (2014). https://doi.org/10.1063/1.4872336

Published

2022-10-10

How to Cite

Kravchenko, D. S., Kustova, E. V., & Melnik, M. Y. (2022). Modeling of state-to-state oxygen kinetics behind reflected shock waves. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(3), 426–439. https://doi.org/10.21638/spbu01.2022.304

Issue

Section

On the anniversary of N.F. Morozov

Most read articles by the same author(s)

1 2 > >>