On the stability of the zero solution of a periodic reversible second-order differential equation

Authors

  • Yuri N. Bibikov St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2022.308

Abstract

The problem of the stability of the zero solution of the second-order differential equation describing the periodic perturbations of an oscillator with a nonlinear reducing force is studied. The problem in the autonomous case was solved by A.M. Lyapunov. The so called transcendental case when all members of the decomposition of the right part of the differential equation into series are to be taken into account, is considered. This case takes place for reversible differential equations, i. e. equations that do not change when time is replaced by the opposite value. The problem is solved by the methods of the KAM theory, according to which in any neighborhood of the equilibrium position at the origin of the phase plane there are periodic invariant two-dimensional tori that separate the three-dimensional configuration space. These tori are considered as two-dimensional periodic invariant surfaces covering the time axis from where the stability (non-asymptotic) of the zero solution followed. The problem to be solved is characterized by the fact that the unperturbed part of the equation contains a dissipative term (a term dependent on velocity) which has the same order of smallness as the restoring force. It is established that if a dissipative part of the perturbation is small enough then the unperturbed movement is stable according to Lyapunov.

Keywords:

second-order differential equations, periodic perturbations, oscillator, reversibility, transcendence, stability

Downloads

Download data is not yet available.
 

References

Литература

1. Мозер Ю.К. О разложении условно-периодических движенийв сходящиеся степенные ряды. УМН 24, вып. 2 (146), 165-211 (1969).

2. Бибиков Ю.Н. Многочастотные нелинейные колебания и их бифуркации. Ленинград, Изд-во Ленингр. ун-та (1991).

3. Ляпунов А.М. Исследование одного из особенных случаев задачи об устойчивости движения. В: Собрание сочинений. Т. 2, 272-331. Москва, Ленинград, Изд-во АН СССР (1956).

4. Бибиков Ю.Н. Применение теоремы Мозера к исследованию дифференциальных уравнений нелинейных колебаний. ДАН СССР 225 (6), 1241-1244 (1975).

5. Басов В.В., Бибиков Ю.Н. Об устойчивости положения равновесия в одном случае периодического возмущения центра. Дифференц. уравнения 33 (5), 583-586 (1997).

6. Бибиков Ю.Н., Савельева А.Г. Периодические возмущения неконсервативного центра. Дифференц. уравнения 54 (3), 302-306 (2018). https://doi.org/10.1134/S0374064118030032

7. Басов В.В., Бибиков Ю.Н. Об устойчивости нелинейного центра при квазипериодических возмущениях. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 7 (65), вып. 2, 269-276 (2020). https://doi.org/10.21638/11701/spbu01.2020.209

References

1. Moser J. Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136-176 (1967). https://doi.org/10.1007/BF01399536 [Rus. ed.: Uspekhi Mat. Nauk 24, iss. 2 (146), 165-211 (1969)].

2. Bibikov Yu.N. Multifrequency nonlinear oscillations and their bifurcations. Leningrad, Leningrad University Press (1991). (In Russian)

3. Lyapunov A.M. Investigation of one particular case of the problem of stability of motion. In: Collected works. Vol. 2, 272-331. Moscow, Leningrad, Izdatel’stvo AN SSSR (1956). (In Russian)

4. Bibikov Yu.N. Application of Moser’s theorem to the study of differential equations of nonlinear oscillations. Dokl. AN SSSR 225 (6), 1241-1244 (1975). (In Russian)

5. Basov V.V., Bibikov Yu.N. On the stability of the equilibrium position in one case of periodic perturbation of the center. Differ. Uravn. 33 (5), 583-586 (1997). (In Russian) [Eng. transl.: Differ. Equ. 33 (5), 587-590 (1997)].

6. Bibikov Yu.N., Savelyeva A.G. Periodic disturbances of the non-conservative center. Differ. Uravn. 54 (3), 302-306 (2018). https://doi.org/10.1134/S0374064118030032 (In Russian) [Eng. transl.: Differ. Equ. 54 (3), 295-299 (2018). https://doi.org/10.1134/S0012266118030023].

7. Basov V.V., Bibikov Yu.N. On the stability of “nonlinear center” under quasiperiodic perturbations. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 7 (65), iss. 2, 269-276 (2020). https://doi.org/10.21638/11701/spbu01.2020.209 (In Russian) [Eng. transl.: Vestnik St Petersb. Univ. Math. 53, 174-179 (2020). https://doi.org/10.1134/S1063454120020041].

Published

2022-10-10

How to Cite

Bibikov, Y. N. (2022). On the stability of the zero solution of a periodic reversible second-order differential equation. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(3), 474–479. https://doi.org/10.21638/spbu01.2022.308

Issue

Section

Mathematics