Heat and radiative fluxes in strongly nonequilibrium flows behind shock waves

Authors

  • Vladimir A. Istomin St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Elena V. Kustova St Petersburg State University, 7–9, Universitetskaya nab., St Petersburg, 199034, Russian Federation, Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, 44/2, ul. Vavilova, Moscow, 119333, Russian Federation
  • Kirill A. Prutko Space Research Institute of the Russian Academy of Sciences, 84/32, ul. Profsoyuznaya, Moscow, 117997, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2022.412

Abstract

State-to-state and two-temperature theoretical models for high-temperature strongly nonequilibrium reacting and radiating air flows are developed in the framework of the generalized Chapman - Enskog method. In the theoretical approach, the sets of governing equations for coupled fluid dynamics, chemical kinetics, internal energy transitions and radiation are derived; the algorithms for the calculation of state-resolved transport coefficients are developed and implemented. The proposed models are applied for 1-D simulations of shock waves in air under high-temperature conditions observed in flight experiments. Nonequilibrium mixture composition, temperatures and pressure profiles are obtained and compared for various models of chemical reaction rate coefficients. Flow variables strongly depend on both the kinetic-theory approach and chemical reaction model; species molar fractions and temperature show significantly different behaviour for the state-to-state and two-temperature simulations. Transport properties and radiative fluxes are calculated as functions of the distance from the shock front. It is found that diffusion provides a major contribution to the total energy flux whereas the role of heat conduction is weak due to the compensation effects. It is shown that under considered conditions, two-temperature models are not applicable for correct predictions of radiative heating.

Keywords:

state-to-state kinetics, electronic excitation, transport coefficients, heat flux, radiative flux

Downloads

Download data is not yet available.
 

References

Литература

1. Reynier P. Survey of high-enthalpy shock facilities in the perspective of radiation and chemical kinetics investigations. Progress in Aerospace Sciences 85, 1-32 (2016). http://doi.org/10.1016/j.paerosci.2016.04.002

2. Cauchon D.L. Radiative heating results from Fire II flight experiment at a re- entry velocity of 11.4 km/s. NASA TM X-1402 (1967).

3. Johnston C.O., Hollis B.R., Sutton K. Nonequilibrium stagnation-line radiative heating for Fire II. Journal of Spacecraft and Rockets 45 (6), 1185-1195 (2008).

4. Panesi M., Magin T.E., Bourdon A., Bultel A., Chazot O. Fire II flight experiment analysis by means of a collisional-radiative model. J. Thermophys. Heat Transfer 23 (2), 236-248 (2009).

5. Surzhikov S.T. Radiative gas dynamics of the Fire-II superorbital space vehicle. Technical Physics 61 (3), 349-359 (2016). https://doi.org/10.1134/S1063784216030208

6. Nagnibeda E.A., Kustova E.V. Nonequilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes. Springer-Verlag, Berlin, Heidelberg (2009).

7. Istomin V., Kustova E. State-specific transport properties of partially ionized flows of electronically excited atomic gases. Chem. Phys. 485-486, 125-139 (2017). http://dx.doi.org/10.1016 /j.chemphys.2017.01.012

8. Kustova E.V., Chikhaoui A. Kinetic modelling of radiative reacting gas flow under strong nonequilibrium conditions. Chem. Phys. 255, 59-71 (2000).

9. Aliat A., Chikhaoui A., Kustova E.V. Non-equilibrium kinetics of a radiative CO flow behind a shock wave. Phys. Review E 68, 056306 (2003).

10. Istomin V., Oblapenko G. Transport coefficients in high-temperature ionized air flows with electronic excitation. Physics of Plasmas 25 (1), 013514 (2018). https://doi.org/10.1063/1.5017167

11. Kunova O., Kustova E.M. Mekhonoshina, Nagnibeda E. Non-equilibrium kinetics, diffusion and heat transfer in shock heated flows of N2/N and O2/O mixtures. Chem. Phys. 463, 70-81 (2015). http://doi.org/10.1016/j.chemphys.2015.10.004

12. Istomin V., Kustova E. Transport coefficients and heat fluxes in non-equilibrium high-temperature flows with electronic excitation. Physics of Plasmas 24 (2), 022109 (2017). http://doi.org/10.1063/1.4975315

13. Землянский Б.А., Лунев В.В., Власов В.И., Горшков А.Б., Залогин Г.Н., Ковалев Р.В., Маринин В.П., Мурзинов И.Н. Конвективный теплообмен летательных аппаратов. Москва, Физматлит, 2014.

14. Prutko K.A. Radiating gas behind strong shock waves with non-equilibrium ionization processes. Physical-Chemical Kinetics in Gas Dynamics 17 (3), 851-872 (2016). https://doi.org/10.18721/JPM.10207

15. Cunto W. Topbase at the cds. Astronomy and Astrophysics 275, L5-L8 (1993).

16. Mallard W.G., Westley F., Herron J.T., Hampson R.F. IST Chemical Kinetics Database - Ver. 6.0. NIST Standard Reference Data, Gaithersburg, MD (1994).

17. Zel’dovich Ya.B., Raiser Yu.P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. New York, Academic Press (1967).

18. Park C. Chemical-kinetic problems of future nasa missions. i. earth entries. Journal of Ther mophysics and Heat Transfer 7 (3), 385-398 (1993).

19. Cambier J.L., Kapper M.G. Ionizing shocks in argon. Рart 1: Collisional-radiative model and steady-state structure. Journal of Applied Physics 109, 113308 (2011). https://doi.org/10.1063 /1.3585688

20. Millikan R.C., White D.R. Systematics of vibrational relaxation. J. Chem. Phys. 39, 3209-3213 (1963).

21. Grinstead J., Wilder M., Olejniczak J., Bogdanoff D., Allen G., Dang K., Forrest M. Shock Heated Air Radiation Measurements at Lunar Return Conditions. Session: TP-9: CEV Aerosciences II 1244, 092407 (2008). https://doi.org/10.2514/6.2008-1244

References

1. Reynier P. Survey of high-enthalpy shock facilities in the perspective of radiation and chemical kinetics investigations. Progress in Aerospace Sciences 85, 1-32 (2016). http://doi.org/10.1016/j.paerosci.2016.04.002

2. Cauchon D.L. Radiative heating results from Fire II flight experiment at a re- entry velocity of 11.4 km/s. NASA TM X-1402 (1967).

3. Johnston C.O., Hollis B.R., Sutton K. Nonequilibrium stagnation-line radiative heating for Fire II. Journal of Spacecraft and Rockets 45 (6), 1185-1195 (2008).

4. Panesi M., Magin T.E., Bourdon A., Bultel A., Chazot O. Fire II flight experiment analysis by means of a collisional-radiative model. J. Thermophys. Heat Transfer 23 (2), 236-248 (2009).

5. Surzhikov S.T. Radiative gas dynamics of the Fire-II superorbital space vehicle. Technical Physics 61 (3), 349-359 (2016). https://doi.org/10.1134/S1063784216030208

6. Nagnibeda E.A., Kustova E.V. Nonequilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes. Springer-Verlag, Berlin, Heidelberg (2009).

7. Istomin V., Kustova E. State-specific transport properties of partially ionized flows of electronically excited atomic gases. Chem. Phys. 485-486, 125-139 (2017). http://dx.doi.org/10.1016 /j.chemphys.2017.01.012

8. Kustova E.V., Chikhaoui A. Kinetic modelling of radiative reacting gas flow under strong nonequilibrium conditions. Chem. Phys. 255, 59-71 (2000).

9. Aliat A., Chikhaoui A., Kustova E.V. Non-equilibrium kinetics of a radiative CO flow behind a shock wave. Phys. Review E 68, 056306 (2003).

10. Istomin V., Oblapenko G. Transport coefficients in high-temperature ionized air flows with electronic excitation. Physics of Plasmas 25 (1), 013514 (2018). https://doi.org/10.1063/1.5017167

11. Kunova O., Kustova E.M. Mekhonoshina, Nagnibeda E. Non-equilibrium kinetics, diffusion and heat transfer in shock heated flows of N2/N and O2/O mixtures. Chem. Phys. 463, 70-81 (2015). http://doi.org/10.1016/j.chemphys.2015.10.004

12. Istomin V., Kustova E. Transport coefficients and heat fluxes in non-equilibrium high-temperature flows with electronic excitation. Physics of Plasmas 24 (2), 022109 (2017). http://doi.org/10.1063/1.4975315

13. Zemlyanskiy B.A., Lunev V.V., Vlasov V.I., Gorshkov A.B., Zalogin G.N., Kovalev R.V., Marinin V.P., Murzinov I.N. Convective heat transfer of aircrafts. Moscow, Fizmatlit Publ. (2014). (In Russian)

14. Prutko K.A. Radiating gas behind strong shock waves with non-equilibrium ionization processes. Physical-Chemical Kinetics in Gas Dynamics 17 (3), 851-872 (2016). https://doi.org/10.18721/JPM.10207

15. Cunto W. Topbase at the cds. Astronomy and Astrophysics 275, L5-L8 (1993).

16. Mallard W.G., Westley F., Herron J.T., Hampson R.F. IST Chemical Kinetics Database - Ver. 6.0. NIST Standard Reference Data, Gaithersburg, MD (1994).

17. Zel’dovich Ya.B., Raiser Yu.P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. New York, Academic Press (1967).

18. Park C. Chemical-kinetic problems of future nasa missions. i. earth entries. Journal of Ther mophysics and Heat Transfer 7 (3), 385-398 (1993).

19. Cambier J.L., Kapper M.G. Ionizing shocks in argon. Рart 1: Collisional-radiative model and steady-state structure. Journal of Applied Physics 109, 113308 (2011). https://doi.org/10.1063 /1.3585688

20. Millikan R.C., White D.R. Systematics of vibrational relaxation. J. Chem. Phys. 39, 3209-3213 (1963).

21. Grinstead J., Wilder M., Olejniczak J., Bogdanoff D., Allen G., Dang K., Forrest M. Shock Heated Air Radiation Measurements at Lunar Return Conditions. Session: TP-9: CEV Aerosciences II 1244, 092407 (2008). https://doi.org/10.2514/6.2008-1244

Published

2022-12-26

How to Cite

Istomin, V. A., Kustova, E. V., & Prutko, K. A. (2022). Heat and radiative fluxes in strongly nonequilibrium flows behind shock waves. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(4), 705–719. https://doi.org/10.21638/spbu01.2022.412

Issue

Section

Mechanics

Most read articles by the same author(s)

1 2 > >>