Modeling of nonequilibrium processes behind a shock wave in a mixture of carbon dioxide and argon

Authors

  • Semyon A. Batalov St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Elena V. Kustova St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2023.209

Abstract

A closed self-consistent model of a nonequilibrium flow of a mixture of carbon dioxide and argon behind the front of a plane shock wave is developed. The generalized Chapman - Enskog method is used in the three-temperature approach, taking into account various channels of vibrational relaxation in a carbon dioxide molecule. An extended system of Navier - Stokes - Fourier equations is written, consisting of the equations of conservation of mass, momentum and energy, supplemented by the diffusion equations of the mixture components and relaxation equations for the vibrational modes of the CO2 molecule. The closing relations for the stress tensor, diffusion velocity, heat flux and vibrational energy fluxes are obtained. An algorithm for calculating the coefficients of shear and bulk viscosity, thermal conductivity of various degrees of freedom, diffusion and thermal diffusion has been developed and implemented. The model was validated by comparison with experimental data for the viscosity and thermal conductivity of carbon dioxide and argon, as well as for the binary diffusion coefficient. Satisfactory agreement with the experiment was obtained. The dependence of the transport coefficients on the gas temperature, temperatures of vibrational modes and mixture composition is analyzed. The developed model is ready for use in numerical simulation of shock waves in a mixture of CO2-Ar.

Keywords:

transport coefficients, three-temperature model, shock wave, carbon dioxide, argon

Downloads

Download data is not yet available.
 

References

Литература

1. Pietanza L. D., Guaitella O., Aquilanti V., Armenise I. Advances in non-equilibrium CO2 plasma kinetics: a theoretical and experimental review. The European Physical Journal D 75 (9) 237 (2021). https://doi.org/10.1140/epjd/s10053-021-00226-0

2. Нагнибеда Е. А., Кустова Е. В. Кинетическая теория процессов переноса и релаксации в потокахнеравновесныхреагирующихгазов. Санкт-Петербург, Изд-во С.-Петерб. ун-та (2003).

3. Alekseev I., Kustova Е. Extended continuum models for shock waves in CO2. Physics of Fluids 33, 096101 (2021).

4. Алексеев И. В., Кустова Е. В. Численное моделирование ударнойволны в вязком углекислом газе методом конечных объемов. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 7 (65), вып. 3, 500-510 (2020). https://doi.org/10.21638/spbu01.2020.312

5. Kustova E. V., Nagnibeda E. A. On a correct description of a multi-temperature dissociating CO2 flow. Chem. Phys. 321, 293-310 (2006).

6. Elizarova T., Khokhlov A., Montero S. Numerical simulation of shock wave structure in nitrogen. Physics of Fluids 19, 068102 (2007).

7. Timokhin M. Y., Struchtrup H., Kokhanchik A. A., Bondar Y. A. Different variants of R13 moment equations applied to the shock-wave structure. Physics of Fluids 29 (3), 037105 (2017).

8. Shoev G. V., Timokhin M. Y., Bondar Y. A. On the total enthalpy behavior inside a shock wave. Physics of Fluids 32 (4), 041703 (2020).

9. Wysong I., Gimelshein S., Bondar Y., Ivanov M. Comparison of direct simulation Monte-Carlo chemistry and vibrational models applied to oxygen shock measurements. Physics of Fluids 26 (4), 043101 (2014).

10. Alsmeyer H. Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. J. Fluid. Mech. 74, 497-513 (1976).

11. Ibraguimova L. B., Sergievskaya A. L., Levashov V. Yu., Shatalov O. P., Tunik Yu. V., Zabelinskii I. E. Investigation of oxygen dissociation and vibrational relaxation at temperatures 4000-10800 K. J. Chem. Phys. 139, 034317 (2013). https://doi.org/10.1063/1.4813070

12. Streicher J. W., Krish A., Hanson R. K. Coupled vibration-dissociation time-histories and rate measurements in shock-heated, nondilute O2 and O2-Ar mixtures from 6000 to 14 000 K. Physics of Fluids 33, 056107 (2021). https://doi.org/10.1063/5.0048059

13. Farooq A., Jeffries J. B., Hanson R. K. Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm. Appl. Phys. B 96, 161-173 (2009).

14. Kustova E., Mekhonoshina M. Multi-temperature vibrational energy relaxation rates in CO2. Physics of Fluids 32, 096101 (2020). https://doi.org/10.1063/5.0021654

15. Варгафтик Н. Б. Справочник по теплофизическим свойствам газов и жидкостей. Москва, Наука (1972).

16. Trengove R. D., Wakeham W. A. The Viscosity of Carbon Dioxide, Methane, and Sulfur Hexafluoride in the Limit of Zero Density. J. Phys. Chem. Ref. Data 16, 175 (1987). https://doi.org/10.1063/1.555777.

17. Григорьев И. С., Мейлихов Е. З. (ред.) Физические величины. Cправочник. Москва, Энергоатомиздат (1991).

References

1. Pietanza L. D., Guaitella O., Aquilanti V. Aquilanti V. Advances in non-equilibrium CO2 plasma kinetics: a theoretical and experimental review. The European Physical Journal D 75 (9) 237 (2021). https://doi.org/10.1140/epjd/s10053-021-00226-0

2. Nagnibeda E. А., Kustova E. V. Kineticheskaia teoriia protsessov perenosa i relaksatsii v potokakh neravnovesnykh reagiruiushchikh gazov. St Petersburg, St Рetersburg University Press (2003). (In Russian) [Eng. transl.: Nagnibeda E., Kustova E. Nonequilibrium Reacting Gas Flows: Kinetic Theory of Transport and Relaxation Processes. Berlin; Heidelberg, Springer Verlag (2009)].

3. Alekseev I., Kustova Е. Extended continuum models for shock waves in CO2. Physics of Fluids 33, 096101 (2021).

4. Alekseev I., Kustova E. Numerical simulations of shock waves in viscous carbon dioxide flows using finite volume method. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy (In Russian) 7 (65), iss. 3, 500-510 (2020). https://doi.org/10.21638/spbu01.2020.312 (In Russian) [Eng. transl.: Vestnik St Petersburg University. Mathematics 53 (3), 344-350 (2020). https://doi.org/10.1134/S1063454120030024].

5. Kustova E. V., Nagnibeda E. A. On a correct description of a multi-temperature dissociating CO2 flow. Chem. Phys. 321, 293-310 (2006).

6. Elizarova T., Khokhlov A., Montero S. Numerical simulation of shock wave structure in nitrogen. Physics of Fluids 19, 068102 (2007).

7. Timokhin M. Y., Struchtrup H., Kokhanchik A. A., Bondar Y. A. Different variants of R13 moment equations applied to the shock-wave structure. Physics of Fluids 29 (3), 037105 (2017).

8. Shoev G. V., Timokhin M. Y., Bondar Y. A. On the total enthalpy behavior inside a shock wave. Physics of Fluids 32 (4), 041703 (2020).

9. Wysong I., Gimelshein S., Bondar Y., Ivanov M. Comparison of direct simulation Monte-Carlo chemistry and vibrational models applied to oxygen shock measurements. Physics of Fluids 26 (4), 043101 (2014).

10. Alsmeyer H. Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. J. Fluid. Mech. 74, 497-513 (1976).

11. Ibraguimova L. B., Sergievskaya A. L., Levashov V. Yu., Shatalov O. P., Tunik Yu. V., Zabelinskii I. E. Investigation of oxygen dissociation and vibrational relaxation at temperatures 4000-10800 K. J. Chem. Phys. 139, 034317 (2013). https://doi.org/10.1063/1.4813070

12. Streicher J. W., Krish A., Hanson R. K. Coupled vibration-dissociation time-histories and rate measurements in shock-heated, nondilute O2 and O2-Ar mixtures from 6000 to 14 000 K. Physics of Fluids 33, 056107 (2021). https://doi.org/10.1063/5.0048059

13. Farooq A., Jeffries J. B., Hanson R. K. Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm. Appl. Phys. B 96, 161-173 (2009).

14. Kustova E., Mekhonoshina M. Multi-temperature vibrational energy relaxation rates in CO2. Physics of Fluids 32, 096101 (2020). https://doi.org/10.1063/5.0021654

15. Vargaftik N. B. Tables on the thermophysical properties of gases and liquids. Moscow, Nauka Publ. (1972). (In Russian)

16. Trengove R. D., Wakeham W. A. The Viscosity of Carbon Dioxide, Methane, and Sulfur Hexafluoride in the Limit of Zero Density. J. Phys. Chem. Ref. Data 16, 175 (1987). https://doi.org/10.1063/1.555777

17. Grigoriev I. S., Meilikhov E. Z. (eds). Physical quantities. Handbook. Moscow, Energoatomizdat Publ. (1991). (In Russian)

Published

2023-05-10

How to Cite

Batalov, S. A., & Kustova, E. V. (2023). Modeling of nonequilibrium processes behind a shock wave in a mixture of carbon dioxide and argon. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 10(2), 277–288. https://doi.org/10.21638/spbu01.2023.209

Issue

Section

Mechanics

Most read articles by the same author(s)

1 2 > >>