Sharp Jackson — Chernykh type inequality for spline approximations on the line

Authors

  • Oleg L. Vinogradov Saint Petersburg State University

DOI:

https://doi.org/10.21638/11701/spbu01.2020.102

Abstract

An analog of the Jackson — Chernykh inequality for spline approximations in the space L2(R) is established. For r ∈ N, σ > 0, we denote by Aσr(f)2 the best approximation of a function f ∈ L2(R) by the space of splines of degree r and of minimal defect with knots jπ σ , j ∈ Z, and by ω(f, δ) its first order modulus of continuity in L2(R). The main result of the paper is the following. For every f ∈ L2(R)
Aσr(f)2 6 1 √ 2 ω f, θrπ σ 2 ,
where εr is the positive root of the equation
4ε  2 (ch πε τ − 1) ch πε τ + cos π τ = 1 3 2r−2 , τ = p 1 − ε 2, θr = √ 1 1−ε2 r.

The constant √12 cannot be reduced on the whole class L2(R), even if one insreases the step of the modulus of continuity.

Keywords:

Jackson inequality, splines, sharp constants

Downloads

Download data is not yet available.
 

References

Литература

Черных Н. И.О неравенстве Джексона в L2 // Труды МИАН СССР. 1967. Т. 88. C. 71–74

Корнейчук Н. П.Точные константы в теории приближения. М.: Наука, 1987.

Arestov V. V., Chernykh N. I.On the L2-approximation of periodic functions by trigonometric polynomials // Approximation and function spaces. Proc. Conf., Gda´nsk, 1979. Amsterdam: NorthHolland Publ., 1981. P. 25–43

Ибрагимов И. И., Насибов Ф. Г.Об оценке наилучшего среднеквадратичного приближения суммируемой функции на вещественной оси посредством целых функций конечной степени // Доклады АН СССР. 1970. Т. 194, № 5. C. 1013–1016

Попов В. Ю.О наилучших среднеквадратичных приближениях целыми функциями экспоненциального типа // Изв. вузов. Математика. 1972. Т. 6, №121. C. 65–73.

Московский А. В.Теоремы Джексона в пространствах Lp(Rn) и Lp,λ(R+) // Изв. Тульского гос. ун-та. Сер. Мат. Мех. Инф. 1997. Т. 3, № 1. С. 44–70

Бердышева Е. ЕДве взаимосвязанные экстремальные задачи для целых функций многих переменных // Математические заметки. 1999. Т. 66, № 3. С. 336–350.

Logan B. F. Extremal problems for positive-definite bandlimited functions. II. Eventually negative functions // SIAM Journal of Mathematical Analysis. 1993. Vol. 14, No. 2. P. 253–257

Виноградов О. ЛТочное неравенство Джексона — Черных для приближений периодических функций сплайнами // Сибирский математический журнал. 2019. Т. 60, № 3. С. 537–555.

Schoenberg I. J.Cardinal Spline Interpolation. 2 ed. Philadelphia: SIAM, 1993.

Юдин В. А.Одна экстремальная задача для функций распределения // Математические заметки. 1998. Т. 63, № 2. С. 316–320.

Бабенко А. Г.О точной константе в неравенстве Джексона в L2 // Математические заметки. 1986. Т. 39, № 5. С. 651–664.


References

Chernykh N. I., “Jackson’s inequality in L2”, Proc. Steklov Inst. Math. 88, 75–78 (1967).

Korneichuk N. P., Exact Constants in Approximation Theory, in: Encyclopedia of Mathematics and its Applications 38 (Cambridge University Press, Cambridge, 1991).

Arestov V. V., Chernykh N. I., “On the L2-approximation of periodic functions by trigonometric polynomials”, Approximation and function spaces. Proc. Conf., Gda´nsk, 1979, 25–43 (North-Holland Publ., Amsterdam, 1981).

Ibragimov I. I., Nasibov F. G., “The estimation of the best approximation of a summable function on the real axis by means of entire functions of finite degree”, Dokl. Akad. Nauk SSSR 194(5), 1013–1016 (1970). (In Russian)

Popov V. Yu., “Best mean square approximations by entire functions of exponential type”, Izv. Vyssh. Uchebn. Zaved. Matematika 6(121), 65–73 (1972). (In Russian)

Moskovskii A. V., “Jackson’s theorems in the spaces Lp(Rn) and Lp,λ(R+)”, Izv. Tul. gos. univ. Ser. Mat. Mekh. Inf. 3(1), 44–70 (1997). (In Russian)

Berdysheva E. E., “Two related extremal problems for entire functions of several variables”, Mathematical Notes 66(3), 271–282 (1999).

Logan B. F., “Extremal problems for positive-definite bandlimited functions. II. Eventually negative functions”, SIAM Journal of Mathematical Analysis 14(2), 253–257 (1993).

Vinogradov O. L., “An exact inequality of Jackson — Chernykh type for spline approximations of periodic functions”, Siberian Mathematical Journal 60(3), 412–428 (2019).

Schoenberg I. J., Cardinal Spline Interpolation (2 ed., SIAM, Philadelphia, 1993).

Yudin V. A., “An extremum problem for distribution functions”, Mathematical Notes 63(2), 279–282 (1998).

Babenko A. G., “The exact constant in the Jackson inequality in L2”, Mathematical Notes 39(5), 355–363 (1986).

Published

2020-05-13

How to Cite

Vinogradov, O. L. (2020). Sharp Jackson — Chernykh type inequality for spline approximations on the line. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7(1), 15–27. https://doi.org/10.21638/11701/spbu01.2020.102

Issue

Section

Mathematics