Строгое полиномиальное отделение двух множеств
Аннотация
Одной из основных задач математической диагностики является строгое отделение двух конечных множеств в евклидовом пространстве. Широко известно строгое линейное отделение, которое сводится к решению задачи линейного программирования. Мы вводим понятие строгого полиномиального отделения и показываем, что строгое полиномиальное отделение двух множеств также сводится к решению задачи линейного программирования. Целевая функция предложенной в статье задачи линейного программирования имеет следующую особенность: ее оптимальное значение может равняться только нулю или единице - нулю, если множества допускают строгое полиномиальное отделение, и единице в противном случае. Приведены наглядные примеры строгого отделения двух множеств на плоскости с помощью алгебраических полиномов четвертой степени от двух переменных. Анализируется эффективность применения строгого полиномиального отделения при решении задач бинарной классификации данных.
Скачивания
Библиографические ссылки
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.