Complement to the H¨older inequality for multiple integrals. I
DOI:
https://doi.org/10.21638/spbu01.2022.207Abstract
This article is the first part of the work, the main result of which is the statement that if for functions γ1 ∈ L^(p_1) (R^n), . . . , γm ∈ L^(p_m)(R^n), where m >= 2 and the numbers p_1, . . . , p_m ∈ (1,+∞] are such that 1/p_1 + ... + 1/p_m, a non-resonant condition is met (the concept introduced by the author for functions from L^p(R^n), p ∈ (1,+∞]), then sup_(a,b∈R^n) (...), where [a, b] is an n-dimensional parallelepiped, the constant C > 0 does not depend on functions Δ_γ_k ∈ L^(p_k)_(h_k) (R^n) C L^(p_k) (R^n), 1 <= k <= m, are specially constructed normalized spaces. In the article, for any spaces L^p_0 (R^n), L^p(R^n) p_0, p ∈ (1,+∞] and any function γ ∈ L^p_0 (R^n) the concept of a set of resonant points of a function γ with respect to the L^p(R^n) is introduced. This set is a subset of {R1 ∪{∞}}^n for any trigonometric polynomial of n variables with respect to any L^p(R^n) represents the spectrum of the polynomial in question. Theorems are written on the representation of each function γ ∈ L^p_0 (R^n) with a nonempty resonant set as the sum of two functions such that the first of them belongs to the L^p_0 (R^n) ∩ L^q(R^n), 1/p + 1/q = 1, and the carrier of the Fourier transform of the second is centered in the neighborhood of the resonant set.Keywords:
the Holder inequality
Downloads
Download data is not yet available.
References
Литература
1. Бурбаки Н. Интегрирование. Меры, интегрирование мер, пер. с франц. Москва, Наука (1967).
2. Иванов Б.Ф. Об одном дополнении к неравенству Гёльдера. I. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 4 (62), вып. 3, 436–447 (2017). https://doi.org/10.21638/11701/spbu01.2017306
3. Иванов Б.Ф. Об одном дополнении к неравенству Гёльдера. II. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 4 (62), вып. 4, 586–596 (2017). https://doi.org/10. 21638/11701/spbu01.2017.407
4. Крейн С. Г.(ред.) Функциональный анализ. В сер.: Справочная математическая библиотека. Москва, Наука (1972).
5. Гельфанд И.М., Шилов Г. Е. Обобщенные функции и действия над ними. В сер.: Обобщенные функции, вып. 1. Москва, Физматлит (1959).
6. Владимиров В.С. Уравнения математической физики. Москва, Наука (1971).
7. Владимиров В.С. Обобщенные функции в математической физике. Москва, Наука (1979).
8. Иванов Б.Ф. Об одном обобщении неравенства Бора. Проблемы анализа 2 (20), №2, 21–57 (2013). https://doi.org/10.15393/j3.art.2013.2382
9. Титчмарш Е. Введение в теорию интегралов Фурье, пер. с англ. Москва, Ленинград, ГИТТЛ (1949).
10. Ронкин Л.И. Почти периодические обобщенные функции в трубчатых областях. Зап. научн. сем. ПОМИ 247, 210–236 (1997).
11. Стейн И., Вейс Г. Введение в гармонический анализ на евклидовых проcтранствах, пер. с англ. Москва, Мир (1974).
References
1. Bourbaki N. Int´egration. Livre VI. In: ´El´ements de math´ematique. Paris, Hermann & Cie (1956). [Rus. ed.: Bourbaki N. Integrirovanie. Mery, integrirovanie mer. Moscow, Nauka Publ. (1967)].
2. Ivanov B. F. On some addition to the Holder inequality. I. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 4 (62), iss. 3, 436–447 (2017). https://doi.org/10.21638/11701/spbu01.2017306 (In Russian) [Eng. transl.: Vestnik St Petersburg University Mathematics 50, 265–273 (2017). https://doi.org/10.3103/S1063454117030086].
3. Ivanov B. F. On some addition to the Holder inequality. II. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 4 (62), iss. 4, 586–596 (2017). https://doi.org/10.21638/11701/spbu01.2017.407 (In Russian) [Eng. transl.: Vestnik St Petersburg University Mathematics 50, 354–363 (2017). https://doi.org/10.3103/S1063454117040100].
4. Krein S.G. Functional analysis. In Ser.: The reference mathematical library. Moscow, Nauka Publ. (1972). (In Russian)
5. Gel’fand I.M., Shilov G. E. The generalized functions and actions over them. In Ser.: The generalized functions, iss. 1. Moscow, Fizmatlit Publ. (1959). (In Russian)
6. Vladimirov V. S. Equations of mathematical physics. Moscow, Nauka Publ. (1971). (In Russian)
7. Vladimirov V. S. Generalized functions in mathematical physics. Moscow, Nauka Publ. (1979). (In Russian)
8. Ivanov B. F. About a generalization of the Bohr inequality. Issues of Analysis 2 (20), no. 2, 21–57 (2013). https://doi.org/10.15393/j3.art.2013.2382 (In Russian)
9. Titchmarsh E. Introduction in theory of Fourier integrals. Oxford, Clarendon Press (1948). [Rus. ed.: Titchmarsh E. Vvedenie v teoriju integralov Fur’e. Moscow, Leningrad, GITTL Publ. (1949)].
10. Ronkin L. I. Almost periodic generalized functions in tubular domains. Zapiski Nauchnykh Seminarov POMI 247, 210–236 (1997). (In Russian) [Eng. transl.: J. Math. Sci. 101, 3172–3189 (2000). https://doi.org/10.1007/BF02673742].
11. Stein I., Weiss G. Introduction to Fourier analysis on Euclidean spaces. In Ser.: Princeton Mathematical Series, vol. 32. Princeton University Press (1972). [Rus. ed.: Stein I., Weiss G. Vvedenie v garmonicheskij analiz na evklidovyh proctranstvah. Moscow, Mir Publ. (1974)].
Downloads
Published
2022-07-06
How to Cite
Ivanov, B. F. (2022). Complement to the H¨older inequality for multiple integrals. I. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(2), 255–268. https://doi.org/10.21638/spbu01.2022.207
Issue
Section
Mathematics
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.