Generalization of the selfish parking problem

Authors

  • Sergey M. Ananjevskii St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Alexander P. Chen St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2022.307

Abstract

The work is devoted to the study of a new model of random filling of a segment of large length with intervals of smaller length. Two new formulations of the problem are considered. In the first case, a model is considered in which unit intervals are placed on the segment in such a way that with each next placement of the interval next to the left or right, there should be a free space of length not less than a pre-fixed value. The second model is such that intervals of length 2 are randomly placed and no two intervals should be adjacent. In both cases, the behavior of the average number of located intervals depending on the length of the filled segment is investigated.

Keywords:

random filling, parking problem, asymptotic behavior

Downloads

 

References

Литература

1. R´enyi A. On a one-dimensional problem concerning space-filling. Publ. of the Math. Inst. of Hungarian Acad. of Sciences 3, 109-127 (1958).

2. Ананьевский С.М., Крюков Н.А. Задача об эгоистичнойпарковке. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 5 (63), вып. 4, 549-555 (2018). https://doi.org/10.21638/11701/spbu01.2018.402

3. АнаньевскийС. М., Крюков Н.А. Об асимптотическойнормальности в одном обобщении задачи Реньи. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 6 (64), вып. 3, 353-362 (2019). https://doi.org/10.21638/11701/spbu01.2019.301

4. Clay M.P., Simanyi N.J. R´enyi’s parking problem revisited. Mathematical theory. 29 Dec. 2014. ArXiv:1406.1781v1 [math.PR].

5. Gerin L. The Page-R´enyi parking process. 28 Nov. 2014. ArXiv:1411.8002v1[math.PR].

6. Ананьевский С.М. Некоторые обобщения задачи о «парковке». Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 3 (61), вып. 4, 525-532 (2016). https://doi.org/10.21638/11701/spbu01.2016.401

7. Ананьевский С.М. Задача парковки для отрезков различнойдлины. Записки научн. семинаров ПОМИ РАН 228, 16-23 (1996).

References

1. R´enyi A. On a one-dimensional problem concerning space-filling. Publ. of the Math. Inst. of Hungarian Acad. of Sciences 3, 109-127 (1958).

2. Ananjevskii S.M., Kryukov N.A. The problem of selfish parking. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 5 (63), iss. 4, 549-555 (2018). https://doi.org/10.21638/11701/spbu01.2018.402 (In Russian) [Eng. transl.: Vestnik St Petersb. Univ. Math. 51, 322-326 (2018). https://doi.org/10.3103/S1063454118040039].

3. Ananjevskii S.M., Kryukov N.A. On asymptotic normality in one generalization of the Renyi problem. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 6 (64), iss. 3, 353-362 (2019). https://doi.org/10.21638/11701/spbu01.2019.301 (In Russian) [Eng. transl.: Vestnik St Petersb. Univ. Math. 52, 227-233 (2019). https://doi.org/10.1134/S1063454119030026].

4. Clay M.P., Simanyi N.J. R´enyi’s parking problem revisited. Mathematical theory. 29 Dec. 2014. ArXiv:1406.1781v1 [math.PR].

5. Gerin L. The Page-R´enyi parking process. 28 Nov. 2014. ArXiv:1411.8002v1[math.PR].

6. Ananjevskii S.M. Generalizations of the parking problem. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 3 (61), iss. 4, 525-532 (2016). https://doi.org/10.21638/11701/spbu01.2016.401 (In Russian) [Eng. transl.: Vestnik St Petersb. Univ. Math. 49, 299-304 (2016). https://doi.org/10.3103/S1063454116040026].

7. Ananjevskii S.M. The “parking” problem for segments of different length. Zapiski Nauchnykh Seminarov POMI 228, 16-23 (1996). (In Russian) [Eng. transl.: Journal of Mathematical Sciences 93, 259-264 (1999). https://doi.org/10.1007/BF02364808].

Published

2022-10-10

How to Cite

Ananjevskii, S. M., & Chen, A. P. (2022). Generalization of the selfish parking problem. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(3), 464–473. https://doi.org/10.21638/spbu01.2022.307

Issue

Section

Mathematics

Most read articles by the same author(s)