Regularization of the procedure for inverting the Laplace transform using quadrature formulas
DOI:
https://doi.org/10.21638/spbu01.2022.406Abstract
The problem of inversion of the integral Laplace transform, which belongs to the class of ill-posed problems, is considered. Integral equations are reduced to ill-conditioned systems of linear algebraic equations (SLAE), in which the unknowns are either the expansion coefficients in a series in terms of shifted Legendre polynomials, or the approximate values of the desired original at a number of points. The first step of reduction to SLAE is to apply quadrature formulas that provide the minimum values of the condition number of SLAE. Regularization methods are used to obtain a reliable solution of the system. A common strategy is to use the Tikhonov stabilizer or its modifications. A variant of the regularization method for systems with oscillatory-type matrices is presented, which significantly reduces the conditionality of the problem in comparison with the classical Tikhonov scheme. A method is given for actually constructing special quadratures leading to problems with oscillation matrices.Keywords:
system of linear algebraic equations, integral equations of the first kind, ill-posed problems, ill-conditioned problems, condition number, oscillation matrices, regularization method
Downloads
Download data is not yet available.
References
Литература
1. Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. Москва, Лань (2002).
2. Крылов В.И., Скобля Н.С. Методы приближенного преобразования Фурье и обращения преобразования Лапласа. Москва, Наука (1974).
3. Рябов В.М. Численное обращение преобразования Лапласа. Санкт-Петербург, Изд-во С.-Петерб. ун-та (2013).
4. Cohen A.M. Numerical methods for Laplace transform inversion. New York, Springer (2007).
5. Суетин П.К. Классические ортогональные многочлены. Москва, Наука (1976).
6. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. Москва, Наука (1979).
7. Иванов В.К., Васин В.В., Танана В.П. Теория линейных некорректных задач и ее приложения. Москва, Наука (1978).
8. Кабанихин С.И. Обратные и некорректные задачи. Новосибирск, Сибирское научное издво (2009).
9. Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. Москва, Наука (1984).
10. Gautschi W. On the condition of a matrix arising in the numerical inversion of the Laplace transform. Mathematics of computation 23 (105), 109-118 (1969).
11. Гантмахер Ф.Р. Теория матриц. Москва, Наука (1967).
12. Лебедева А.В., Рябов В.М. О численном решении систем линейных алгебраических уравненийс плохо обусловленными матрицами. Вестник Санкт-Петербургскго университета. Математика. Механика. Астрономия 6 (64), вып. 4, 619-626 (2019). https://doi.org/10.21638/11701/spbu01.2019.407
13. Лебедева А.В., Рябов В.М. О регуляризации решения интегральных уравненийпервого рода с помощью квадратурных формул. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 8 (66), вып. 4, 593-599 (2021). https://doi.org/10.21638 /spbu01.2021.404
14. Higham N.J. Functions of matrices: Theory and computation. Philadelphia, Society for Industrial and Applied Mathematics (2008).
References
1. Lavrent’ev M.A., Shabat B.V. Methods of the theory of functions of a complex variable. Moscow, Lan’ Publ. (2002). (In Russian)
2. Krylov V.I., Skoblya N.S. Methods of the approximate Fourier transform and the inversion of the Laplace transform. Moscow, Nauka Publ. (1974). (In Russian)
3. Ryabov V.M. Numerical inversion of the Laplace transform. St Petersburg, St Petersburg University Press (2013). (In Russian)
4. Cohen A.M. Numerical methods for Laplace transform inversion. New York, Springer (2007).
5. Suetin P.K. Classical orthogonal polynomials, Moscow, Nauka Publ. (1976). (In Russian)
6. Tikhonov A.N., Arsenin V.Ya. Metody resheniia nekorrektnykh zadach. Moscow, Nauka Publ. (1979) (In Russian) [Eng. transl.: Tikhonov A.N., Arsenin V.Ya. Solutions of Ill-Posed Problems. Winston (1977)].
7. Ivanov V.K., Vasin V.V., Tanana V.P. Theory of linear ill-posed problems and its applications, Moscow, Science Publ. (1978). (In Russian)
8. Kabanikhin S.I. Inverse and ill-posed problems. Novosibirsk, Sib. Science Publ. (2009). (In Russian)
9. Voevodin V.V., Kuznetsov Yu.A. Matrices and computations. Moscow, Science Publ. (1984). (In Russian)
10. Gautschi W. On the condition of a matrix arising in the numerical inversion of the Laplace transform. Mathematics of computation 23 (105), 109-118 (1969).
11. Gantmakher F.R. Teoriv matriz, Moscow, Nauka Publ. (1967) (In Russian) [Eng. transl.: Gantmakher F. R. The Theory of Matrices, Chelsea Publishing Company (1989)].
12. Lebedeva A.V., Ryabov V.M. On the numerical solution of system of linear algebraic equations with ill-conditioned matrices Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 6 (64), iss. 4, 619-629 (2019). https://doi.org/10.21638/11701/spbu01.2019.407 (In Russian) [Eng. transl.: Vestnik St Petersburg University, Mathematics 52, iss. 4, 388-393 (2019). https://doi.org/10.1134/S1063454119040058].
13. Lebedeva A.V., Ryabov V.M. On the regularization of the solution of integral equations of the first kind using quadrature formulas. Vestnik of Saint Petersburg University. Mathematics, Mathematics, Astronomy 8 (66), iss. 4, 593-599 (2021) https://doi.org/10.21638/spbu01.2021.404 (In Russian) [Eng. transl.: Vestnik St Petersburg University. Mathematics 54, iss. 4, 361-365 (2021) https://doi.org/10.1134/S1063454121040129].
14. Higham N.J. Functions of matrices: Theory and computation. Philadelphia, Society for Industrial and Applied Mathematics (2008).
Downloads
Published
2022-12-26
How to Cite
Lebedeva, A. V., & Ryabov, V. M. (2022). Regularization of the procedure for inverting the Laplace transform using quadrature formulas. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(4), 636–643. https://doi.org/10.21638/spbu01.2022.406
Issue
Section
Mathematics
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.