On opto-thermally excited parametric oscillations of microbeam resonators. I

Authors

  • Nikita F. Morozov St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation, Institute for Problems of Mechanical Engineering of the Russian Academy of Sciences, 61, Bolshoi pr. V. O., St Petersburg, 199178, Russian Federation
  • Dmitriy A. Indeitsev Institute for Problems of Mechanical Engineering of the Russian Academy of Sciences, 61, Bolshoi pr. V. O., St Petersburg, 199178, Russian Federation, Peter the Great St Petersburg Polytechnic University, 29, ul. Politekhnicheskaya, St Petersburg, 195251, Russian Federation
  • Alexei V. Lukin Peter the Great St Petersburg Polytechnic University, 29, ul. Politekhnicheskaya, St Petersburg, 195251, Russian Federation
  • Ivan A. Popov Peter the Great St Petersburg Polytechnic University, 29, ul. Politekhnicheskaya, St Petersburg, 195251, Russian Federation
  • Lev V. Shtukin Institute for Problems of Mechanical Engineering of the Russian Academy of Sciences, 61, Bolshoi pr. V. O., St Petersburg, 199178, Russian Federation, Peter the Great St Petersburg Polytechnic University, 29, ul. Politekhnicheskaya, St Petersburg, 195251, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2023.212

Abstract

The present article is the first part of the work devoted to investigation of the nonlinear dynamics of parametrically excited flexural vibrations of a clamped-clamped microbeam - the basic sensitive element of a promising class of microsensors of various physical quantities - under laser thermooptical action in the form of periodically generated pulses acting on a certain part of the surface of the beam element. An analytical solution of the heat transfer problem is found for the steady harmonic distribution of temperature in the volume of the resonator. The static and dynamic components of temperature-induced axial force and bending moment are determined. Using the Galerkin method, the discretization of nonlinear coupled partial differential equations describing the longitudinal-flexural oscillations of the resonator is performed. Using the asymptotic method of multiple time-scales, an approximate analytical solution is obtained for the nonlinear dynamics problem under the conditions of primary parametric resonance.

Keywords:

nonlinear dynamics, parametric oscillations, Bernoulli - Euler beam, modal interaction, laser-induced opto-thermal excitation

Downloads

Download data is not yet available.
 

References

Литература

1. Vorobyev R. I., Sergeichev I. V., Karabutov A. A., Mironova E. A., Savateeva E. V., Akhatov I. Sh. Application of the Optoacoustic Method to Assess the Effect of Voids on the Crack Resistance of Structural Carbon Plastics. Acoust. Phys. 66, 132-136 (2020). https://doi.org/10.1134/S1063771020020153

2. Yan G., Raetz S., Chigarev N., Blondeau Ja., Gusev V. E., Tournat V. Cumulative fatigue damage in thin aluminum films evaluated non-destructively with lasers via zero-group-velocity Lamb modes. NDT & E International 116, 102323 (2020). https://doi.org/10.1016/j.ndteint.2020.102323

3. Pan Yu., Rossignol C., Audoin B. Acoustic waves generated by a laser line pulse in cylinders; Application to the elastic constants measurement. J. Acoust. Soc. Am. 115 (4), 1537-1545 (2004). https://doi.org/10.1121/1.1651191

4. Chow G., Uchaker E., Cao G., Wang Ju. Laser-induced surface acoustic waves: An alternative method to nanoindentation for the mechanical characterization of porous nanostructured thin film electrode media. Mechanics of Materials 91, 333-342 (2015). https://doi.org/10.1016/J.MECHMAT.2015.10.005

5. Champion A., Bellouard Y. Direct volume variation measurements in fused silica specimens exposed to femtosecond laser. Optical Materials Express 2, 789-798 (2012). https://doi.org/10.1364/OME.2.000789

6. Otsuka P. H., Mezil S., Matsuda O., Tomoda M., Maznev A. A., Gan T., Fang N., Boechler N., Gusev V. E., Wright O. B. Time-domain imaging of gigahertz surface waves on an acoustic metamaterial. New Journal of Physics 20, 013026 (2018). https://doi.org/10.1088/1367-2630/AA9298

7. Li C., Guan G., Zhang F., Nabi G., Wang R. K., Huang Z. Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application. Biomedical Optics Express 5 (5), 1403-1418 (2014). https://doi.org/10.1364/BOE.5.001403

8. Phinney L. M., Klody K. A., Sackos Jo. T., Walraven Je. A. Damage of MEMS thermal actuators heated by laser irradiation. Reliability, Packaging, Testing and Characterization of MEMS/MOEMS IV. Proceedings of MOEMS-MEMS Micro and Nanofabrication, 2005, San Jose, California, United States, 5716, 81-88 (2005). https://doi.org/10.1117/12.594408

9. Serrano J. R., Phinney L. M. Displacement and Thermal Performance of Laser-Heated Asymmetric MEMS Actuators. Journal of Microelectromechanical Systems 17 (1), 166-174 (2008). https://doi.org/10.1109/JMEMS.2007.911945

10. Mai A., Bunce C., H¨ubner R., Pahner D., Dauderst¨adt U. A. In situ bow change of Al-alloy MEMS micromirrors during 248-nm laser irradiation. Journal of Micro/Nanolithography, MEMS and MOEMS 15 (3), 035502 (2016). https://doi.org/10.1117/1.JMM.15.3.035502

11. Zook J. D., Burns D.W., Herb W. R., Guckel H., Kang J.W., Ahn Y. Optically excited self-resonant microbeams. Sensors and Actuators A: Physical 52 (1), 92-98 (1996). https://doi.org/10.1016/0924-4247(96)80131-2

12. Yang T., Bellouard Y. Laser-induced transition between nonlinear and linear resonant behaviors of a micromechanical oscillator. Phys. Rev. Applied 7, 064002 (2017). https://doi.org/10.1103/PhysRevApplied.7.064002

13. Dolleman R. J., Houri S., Chandrashekar A., Alijani F., van der Zant H. S. J., Steeneken P. G. Opto-thermally excited multimode parametric resonance in graphene membranes. Sci. Rep. 8, 9366 (2018). https://doi.org/10.1038/s41598-018-27561-4

14. Zehnder A. T., Rand R. H., Krylov S. Locking of electrostatically coupled thermo-optically driven MEMS limit cycle oscillators. International Journal of Non-linear Mechanics 102, 92-100 (2018). https://doi.org/10.1016/J.IJNONLINMEC.2018.03.009

15. Bhaskar A., Shayak B., Rand R. H., Zehnder A. T. Synchronization characteristics of an array of coupled MEMS limit cycle oscillators. International Journal of Non-Linear Mechanics 128, 103634 (2021). https://doi.org/10.1016/j.ijnonlinmec.2020.103634

16. Morozov N. F., Tovstik P. E. Dynamic loss of stability of a rod under longitudinal load lower than the Eulerian load. Dokl. Phys. 58, 510-513 (2013). https://doi.org/10.1134/S102833581311013X

17. Carvalho E. C., Goncalves P. B., Rega G. Multiple internal resonances and nonplanar dynamics of a cruciform beam with low torsional stiffness. International Journal of Solids and Structures 121, 117-134 (2017). https://doi.org/10.1016/j.ijsolstr.2017.05.020

18. Ribeiro E. A. R., Lenci S., Mazzilli C. E. N. Modal localisation in a beam modelled as a continuous system: A discussion on the use of auxiliary oscillators. Journal of Sound and Vibration 485, 115595 (2020). https://doi.org/10.1016/j.jsv.2020.115595

19. Lenci S. Isochronous beams by an inclined Roller Support. Journal of Applied Mechanics 85 (9), 091008 (2018). https://doi.org/10.1115/1.4040453

20. Lacarbonara W., Rega G., Nayfeh A. H. Resonant nonlinear normal modes. Part I: analytical treatment for structural one-dimensional systems. Int. J. Non-Linear Mech. 38 (6), 851-872 (2003). https://doi.org/10.1016/S0020-7462(02)00033-1

21. Manevitch L. New approach to beating phenomenon in coupled nonlinear oscillatory chains. Arch. Appl. Mech. 77, 301-312 (2007). https://doi.org/10.1007/s00419-006-0081-1

22. Kambali P. N., Pandey A. K. Nonlinear coupling of transverse modes of a fixed-fixed microbeam under direct and parametric excitation. Nonlinear Dynamics 87, 1271-1294 (2017). https://doi.org/10.1007/s11071-016-3114-5

23. Clementi F., Lenci S., Rega G. 1:1 internal resonance in a two d. o. f. complete system: a comprehensive analysis and its possible exploitation for design. Meccanica 55, 1309-1332 (2020). https://doi.org/10.1007/s11012-020-01171-9

24. Ruzziconi L., Jaber N., Kosuru L., Bellaredj M. L., Younis M. I. Experimental and theoretical investigation of the 2:1 internal resonance in the higher-order modes of a MEMS microbeam at elevated excitations. Journal of Sound and Vibration 499, 115983 (2021). https://doi.org/10.1016/j.jsv.2021.115983

25. Leamy M. J., Gottlieb O. Internal resonances in whirling strings involving longitudinal dynamics and material non-linearities. Journal of Sound and Vibration 236, 683-703 (2000). https://doi.org/10.1006/jsvi.2000.3039

26. Kovriguine D. A., Maugin G. A., Potapov A. I. Multiwave nonlinear couplings in elastic structures. Part I. One-dimensional examples. International Journal of Solids and Structures 39, 5571-5583 (2002). https://doi.org/10.1016/S0020-7683(02)00365-7

27. Kovriguine D. A., Maugin G. A., Potapov A. I. Multiwave non-linear couplings in elastic structures. Part II: Two-dimensional example. Journal of Sound and Vibration 263 (5), 1055-1069 (2003). https://doi.org/10.1016/S0022-460X(03)00274-8

28. Srinil N., Rega G. Nonlinear longitudinal/transversal modal interactions in highly extensible suspended cables. Journal of Sound and Vibration 310, 230-242 (2008). https://doi.org/10.1016/j.jsv.2007.07.056

29. Yang X.-D., Zhang W. Nonlinear dynamics of axially moving beam with coupled longitudinaltransversal vibrations. Nonlinear Dynamics 78, 2547-2556 (2014). https://doi.org/10.1007/s11071-014-1609-5

30. Беляев А. К., Морозов Н. Ф., Товстик П. Е., Товстик Т. П. Устойчивость гибкого вертикального стержня на вибрирующем основании. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 5 (63), вып. 3, 477-488 (2018). https://doi.org/10.21638/11701/spbu01.2018.311

31. Беляев А. К., Ма Ч.-Ч., Морозов Н. Ф., Товстик П. Е., Товстик Т. П., Шурпатов А. О. Динамика стержня при продольном ударе телом. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 4 (62), вып. 3, 506-515 (2017).

32. Saetta E., Settimi V., Rega G. Minimal thermal modeling of two-way thermomechanically coupled plates for nonlinear dynamics investigation. Journal of Thermal Stresses 43 (3), 345-371 (2020). https://doi.org/10.1080/01495739.2019.1704669

33. Indeitsev D. A., Osipova E. V. A Two-temperature model of optical excitation of acoustic waves in conductors. Dokl. Phys. 62 (3), 136-140 (2017). https://doi.org/10.1134/S1028335817030065

34. Sun Y., Liu S., Rao Z., Li Y., Yang J. Thermodynamic response of beams on Winkler foundation irradiated by moving laser pulses. Symmetry 10 (8), 328 (2018). https://doi.org/10.3390/sym10080328

35. Wen C., Tang L., Yang G. Buckling and post-buckling of pinned Euler beams on weakened Winkler foundation under thermal loading. Journal of Thermal Stresses 43 (5), 529-542 (2020). https://doi.org/10.1080/01495739.2020.1734128

36. Gu B., He T. Investigation of thermoelastic wave propagation in Euler - Bernoulli Beam via nonlocal strain gradient elasticity and G-N Theory. Journal of Vibration Engineering & Technologies 9 (5), 715-724 (2021). https://doi.org/10.1007/s42417-020-00277-4

37. Morozov N. F., Indeitsev D. A., Lukin A. V., Popov I. A., Privalova O. V., Shtukin L. V. Stability of the Bernoulli - Euler Beam in coupled electric and thermal fields. Dokl. Phys. 63, 342-347 (2018). https://doi.org/10.1134/S1028335818080086

38. Morozov N. F., Indeitsev D. A., Lukin A. V., Popov I. A., Privalova O. V., Semenov B. N., Shtukin L. V. Bernoulli - Euler beam under action of a moving thermal source: characteristics of the dynamic behavior. Dokl. Phys. 64, 185-188 (2019). https://doi.org/10.1134/S1028335819040050

39. Morozov N. F., Indeitsev D. A., Lukin A. V., Popov I. A., Privalova O. V., Shtukin L. V. Stability of the Bernoulli - Euler Beam under the action of a moving thermal source. Dokl. Phys. 65, 67-71 (2020). https://doi.org/10.1134/S102833582002007X

40. Morozov N. F., Indeitsev D. A., Lukin A. V., Popov I. A., Shtukin L. V. Nonlinear interaction of longitudinal and transverse vibrations of a rod at an internal combinational resonance in view of opto-thermal excitation of N/MEMS. Journal of Sound and Vibration 509, 116247 (2021). https://doi.org/10.1016/j.jsv.2021.116247

41. Морозов Н. Ф., Индейцев Д. А., Лукин А. В., Попов И. А., Штукин Л. В. Нелинейное модальное взаимодействие продольных и изгибных колебаний балочного резонатора при периодическом тепловом нагружении. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 9 (67), вып. 2, 317-337 (2022). https://doi.org21638/spbu01.2022.212

42. Tang D.W., Araki N. Wavy, wavelike, diffusive thermal responses of finite rigid slabs to highspeed heating of laser-pulses. International Journal of Heat and Mass Transfer 42, 855-860 (1999). https://doi.org/10.1016/S0017-9310(98)00244-0

43. Cole K., Beck J., Haji-Sheikh A., Litkouhi B. Heat Conduction Using Green’s Functions. Taylor & Francis (2011).

References

1. Vorobyev R. I., Sergeichev I. V., Karabutov A. A., Mironova E. A., Savateeva E. V., Akhatov I. Sh. Application of the Optoacoustic Method to Assess the Effect of Voids on the Crack Resistance of Structural Carbon Plastics. Acoust. Phys. 66, 132-136 (2020). https://doi.org/10.1134/S1063771020020153

2. Yan G., Raetz S., Chigarev N., Blondeau Ja., Gusev V. E., Tournat V. Cumulative fatigue damage in thin aluminum films evaluated non-destructively with lasers via zero-group-velocity Lamb modes. NDT & E International 116, 102323 (2020). https://doi.org/10.1016/j.ndteint.2020.102323

3. Pan Yu., Rossignol C., Audoin B. Acoustic waves generated by a laser line pulse in cylinders; Application to the elastic constants measurement. J. Acoust. Soc. Am. 115 (4), 1537-1545 (2004). https://doi.org/10.1121/1.1651191

4. Chow G., Uchaker E., Cao G., Wang Ju. Laser-induced surface acoustic waves: An alternative method to nanoindentation for the mechanical characterization of porous nanostructured thin film electrode media. Mechanics of Materials 91, 333-342 (2015). https://doi.org/10.1016/J.MECHMAT.2015.10.005

5. Champion A., Bellouard Y. Direct volume variation measurements in fused silica specimens exposed to femtosecond laser. Optical Materials Express 2, 789-798 (2012). https://doi.org/10.1364/OME.2.000789

6. Otsuka P. H., Mezil S., Matsuda O., Tomoda M., Maznev A. A., Gan T., Fang N., Boechler N., Gusev V. E., Wright O. B. Time-domain imaging of gigahertz surface waves on an acoustic metamaterial. New Journal of Physics 20, 013026 (2018). https://doi.org/10.1088/1367-2630/AA9298

7. Li C., Guan G., Zhang F., Nabi G., Wang R. K., Huang Z. Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application. Biomedical Optics Express 5 (5), 1403-1418 (2014). https://doi.org/10.1364/BOE.5.001403

8. Phinney L. M., Klody K. A., Sackos Jo. T., Walraven Je. A. Damage of MEMS thermal actuators heated by laser irradiation. Reliability, Packaging, Testing and Characterization of MEMS/MOEMS IV. Proceedings of MOEMS-MEMS Micro and Nanofabrication, 2005, San Jose, California, United States, 5716, 81-88 (2005). https://doi.org/10.1117/12.594408

9. Serrano J. R., Phinney L. M. Displacement and Thermal Performance of Laser-Heated Asymmetric MEMS Actuators. Journal of Microelectromechanical Systems 17 (1), 166-174 (2008). https://doi.org/10.1109/JMEMS.2007.911945

10. Mai A., Bunce C., H¨ubner R., Pahner D., Dauderst¨adt U. A. In situ bow change of Al-alloy MEMS micromirrors during 248-nm laser irradiation. Journal of Micro/Nanolithography, MEMS and MOEMS 15 (3), 035502 (2016). https://doi.org/10.1117/1.JMM.15.3.035502

11. Zook J. D., Burns D.W., Herb W. R., Guckel H., Kang J.W., Ahn Y. Optically excited self-resonant microbeams. Sensors and Actuators A: Physical 52 (1), 92-98 (1996). https://doi.org/10.1016/0924-4247(96)80131-2

12. Yang T., Bellouard Y. Laser-induced transition between nonlinear and linear resonant behaviors of a micromechanical oscillator. Phys. Rev. Applied 7, 064002 (2017). https://doi.org/10.1103/PhysRevApplied.7.064002

13. Dolleman R. J., Houri S., Chandrashekar A., Alijani F., van der Zant H. S. J., Steeneken P. G. Opto-thermally excited multimode parametric resonance in graphene membranes. Sci. Rep. 8, 9366 (2018). https://doi.org/10.1038/s41598-018-27561-4

14. Zehnder A. T., Rand R. H., Krylov S. Locking of electrostatically coupled thermo-optically driven MEMS limit cycle oscillators. International Journal of Non-linear Mechanics 102, 92-100 (2018). https://doi.org/10.1016/J.IJNONLINMEC.2018.03.009

15. Bhaskar A., Shayak B., Rand R. H., Zehnder A. T. Synchronization characteristics of an array of coupled MEMS limit cycle oscillators. International Journal of Non-Linear Mechanics 128, 103634 (2021). https://doi.org/10.1016/j.ijnonlinmec.2020.103634

16. Morozov N. F., Tovstik P. E. Dynamic loss of stability of a rod under longitudinal load lower than the Eulerian load. Dokl. Phys. 58, 510-513 (2013). https://doi.org/10.1134/S102833581311013X

17. Carvalho E. C., Goncalves P. B., Rega G. Multiple internal resonances and nonplanar dynamics of a cruciform beam with low torsional stiffness. International Journal of Solids and Structures 121, 117-134 (2017). https://doi.org/10.1016/j.ijsolstr.2017.05.020

18. Ribeiro E. A. R., Lenci S., Mazzilli C. E. N. Modal localisation in a beam modelled as a continuous system: A discussion on the use of auxiliary oscillators. Journal of Sound and Vibration 485, 115595 (2020). https://doi.org/10.1016/j.jsv.2020.115595

19. Lenci S. Isochronous beams by an inclined Roller Support. Journal of Applied Mechanics 85 (9), 091008 (2018). https://doi.org/10.1115/1.4040453

20. Lacarbonara W., Rega G., Nayfeh A. H. Resonant nonlinear normal modes. Part I: analytical treatment for structural one-dimensional systems. Int. J. Non-Linear Mech. 38 (6), 851-872 (2003). https://doi.org/10.1016/S0020-7462(02)00033-1

21. Manevitch L. New approach to beating phenomenon in coupled nonlinear oscillatory chains. Arch. Appl. Mech. 77, 301-312 (2007). https://doi.org/10.1007/s00419-006-0081-1

22. Kambali P. N., Pandey A. K. Nonlinear coupling of transverse modes of a fixed-fixed microbeam under direct and parametric excitation. Nonlinear Dynamics 87, 1271-1294 (2017). https://doi.org/10.1007/s11071-016-3114-5

23. Clementi F., Lenci S., Rega G. 1:1 internal resonance in a two d. o. f. complete system: a comprehensive analysis and its possible exploitation for design. Meccanica 55, 1309-1332 (2020). https://doi.org/10.1007/s11012-020-01171-9

24. Ruzziconi L., Jaber N., Kosuru L., Bellaredj M. L., Younis M. I. Experimental and theoretical investigation of the 2:1 internal resonance in the higher-order modes of a MEMS microbeam at elevated excitations. Journal of Sound and Vibration 499, 115983 (2021). https://doi.org/10.1016/j.jsv.2021.115983

25. Leamy M. J., Gottlieb O. Internal resonances in whirling strings involving longitudinal dynamics and material non-linearities. Journal of Sound and Vibration 236, 683-703 (2000). https://doi.org/10.1006/jsvi.2000.3039

26. Kovriguine D. A., Maugin G. A., Potapov A. I. Multiwave nonlinear couplings in elastic structures. Part I. One-dimensional examples. International Journal of Solids and Structures 39, 5571-5583 (2002). https://doi.org/10.1016/S0020-7683(02)00365-7

27. Kovriguine D. A., Maugin G. A., Potapov A. I. Multiwave non-linear couplings in elastic structures. Part II: Two-dimensional example. Journal of Sound and Vibration 263 (5), 1055-1069 (2003). https://doi.org/10.1016/S0022-460X(03)00274-8

28. Srinil N., Rega G. Nonlinear longitudinal/transversal modal interactions in highly extensible suspended cables. Journal of Sound and Vibration 310, 230-242 (2008). https://doi.org/10.1016/j.jsv.2007.07.056

29. Yang X.-D., Zhang W. Nonlinear dynamics of axially moving beam with coupled longitudinaltransversal vibrations. Nonlinear Dynamics 78, 2547-2556 (2014). https://doi.org/10.1007/s11071-014-1609-5

30. Belyaev A. K., Morozov N. F., Tovstik P. E., Tovstik T. P. Stability of a Flexible Vertical Rod on a Vibrating Support. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 5 (63), iss. 3, 477-488 (2018). https://doi.org/10.21638/11701/spbu01.2018.311 (In Russian) [Eng. transl.: Vestnik St Petersburg University. Mathematics 51, iss. 1, 296-304 (2018). https://doi.org/10.3103/S1063454118030020].

31. Belyaev A. K., Ma C.-C., Morozov N. F., Tovstik P. E., Tovstik T. P., Shurpatov A. O. Dynamics of a rod undergoing a longitudinal impact by a body. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 4 (62), iss. 3, 506-515 (2017). (In Russian). [Eng. transl.: Vestnik St Petersburg University. Mathematics 50, iss. 3, 310-317 (2017). https://doi.org/10.3103/S1063454117030050].

32. Saetta E., Settimi V., Rega G. Minimal thermal modeling of two-way thermomechanically coupled plates for nonlinear dynamics investigation. Journal of Thermal Stresses 43 (3), 345-371 (2020). https://doi.org/10.1080/01495739.2019.1704669

33. Indeitsev D. A., Osipova E. V. A Two-temperature model of optical excitation of acoustic waves in conductors. Dokl. Phys. 62 (3), 136-140 (2017). https://doi.org/10.1134/S1028335817030065

34. Sun Y., Liu S., Rao Z., Li Y., Yang J. Thermodynamic response of beams on Winkler foundation irradiated by moving laser pulses. Symmetry 10 (8), 328 (2018). https://doi.org/10.3390/sym10080328

35. Wen C., Tang L., Yang G. Buckling and post-buckling of pinned Euler beams on weakened Winkler foundation under thermal loading. Journal of Thermal Stresses 43 (5), 529-542 (2020). https://doi.org/10.1080/01495739.2020.1734128

36. Gu B., He T. Investigation of thermoelastic wave propagation in Euler - Bernoulli Beam via nonlocal strain gradient elasticity and G-N Theory. Journal of Vibration Engineering & Technologies 9 (5), 715-724 (2021). https://doi.org/10.1007/s42417-020-00277-4

37. Morozov N. F., Indeitsev D. A., Lukin A. V., Popov I. A., Privalova O. V., Shtukin L. V. Stability of the Bernoulli - Euler Beam in coupled electric and thermal fields. Dokl. Phys. 63, 342-347 (2018). https://doi.org/10.1134/S1028335818080086

38. Morozov N. F., Indeitsev D. A., Lukin A. V., Popov I. A., Privalova O. V., Semenov B. N., Shtukin L. V. Bernoulli - Euler beam under action of a moving thermal source: characteristics of the dynamic behavior. Dokl. Phys. 64, 185-188 (2019). https://doi.org/10.1134/S1028335819040050

39. Morozov N. F., Indeitsev D. A., Lukin A. V., Popov I. A., Privalova O. V., Shtukin L. V. Stability of the Bernoulli - Euler Beam under the action of a moving thermal source. Dokl. Phys. 65, 67-71 (2020). https://doi.org/10.1134/S102833582002007X

40. Morozov N. F., Indeitsev D. A., Lukin A. V., Popov I. A., Shtukin L. V. Nonlinear interaction of longitudinal and transverse vibrations of a rod at an internal combinational resonance in view of opto-thermal excitation of N/MEMS. Journal of Sound and Vibration 509, 116247 (2021). https://doi.org/10.1016/j.jsv.2021.116247

41. Morozov N. I., Indeitsev D. A., Lukin A. V., Popov I. A., Shtukin L. V. Nonlinear modal interaction between longitudinal and bending vibrations of a beam resonator under periodic thermal loading. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 9 (67), iss. 2, 317-337 (2022). https://doi.org21638/spbu01.2022.212 (In Russian) [Eng. transl.: Vestnik St Petersburg University. Mathematics 55, iss. 2, 212-228 (2022). https://doi.org/10.1134/S106345412202008X].

42. Tang D.W., Araki N. Wavy, wavelike, diffusive thermal responses of finite rigid slabs to highspeed heating of laser-pulses. International Journal of Heat and Mass Transfer 42, 855-860 (1999). https://doi.org/10.1016/S0017-9310(98)00244-0

43. Cole K., Beck J., Haji-Sheikh A., Litkouhi B. Heat Conduction Using Green’s Functions. Taylor & Francis (2011).

Published

2023-05-10

How to Cite

Morozov, N. F., Indeitsev, D. A., Lukin, A. V., Popov, I. A., & Shtukin, L. V. (2023). On opto-thermally excited parametric oscillations of microbeam resonators. I. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 10(2), 315–333. https://doi.org/10.21638/spbu01.2023.212

Issue

Section

Mechanics

Most read articles by the same author(s)