On opto-thermally excited parametric oscillations of microbeam resonators. I
DOI:
https://doi.org/10.21638/spbu01.2023.212Abstract
The present article is the first part of the work devoted to investigation of the nonlinear dynamics of parametrically excited flexural vibrations of a clamped-clamped microbeam - the basic sensitive element of a promising class of microsensors of various physical quantities - under laser thermooptical action in the form of periodically generated pulses acting on a certain part of the surface of the beam element. An analytical solution of the heat transfer problem is found for the steady harmonic distribution of temperature in the volume of the resonator. The static and dynamic components of temperature-induced axial force and bending moment are determined. Using the Galerkin method, the discretization of nonlinear coupled partial differential equations describing the longitudinal-flexural oscillations of the resonator is performed. Using the asymptotic method of multiple time-scales, an approximate analytical solution is obtained for the nonlinear dynamics problem under the conditions of primary parametric resonance.Keywords:
nonlinear dynamics, parametric oscillations, Bernoulli - Euler beam, modal interaction, laser-induced opto-thermal excitation
Downloads
References
Литература
References
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.