On the numerical solution of system of linear algebraic equations with ill-conditioned matrices

Authors

  • Anastasia V. Lebedeva St. Petersburg State University, Universitetskaya nab., 7–9, St. Petersburg, 199034, Russian Federation
  • Victor M. Ryabov St. Petersburg State University, Universitetskaya nab., 7–9, St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu01.2019.407

Abstract

The system of linear algebraic equations (SLAE) is considered. If the matrix of the system is non-degenerate, then there is a unique solution to the system. In a degenerate case, the system may not have a solution or have infinitely many solutions. In this case, the concept of a normal solution is introduced. The case of a non-degenerate square matrix can theoretically be considered good in terms of existence and uniqueness of the solution, but in the theory of computational methods, nondegenerate matrices are divided into two categories: “ill-conditioned” and “well-conditioned”. Badly called matrices for which the solution of the system of equations is practically unstable. One of the important characteristics of practical solution stability A system of linear equations is a condition number. Usually, regularization methods are used to obtain a reliable solution. A common strategy is to use Tikhonov’s stabilizer or his modifications, or the representation of the desired solution in the form of orthogonal sums of two vectors, one of which is determined stably, and for searching the second requires some stabilization procedure. In this article the methods of numerical solution of SLAE are considered with a positive defined symmetric matrix or oscillating matrix type using regularization, leading to SLAEs with a reduced conditionality number.

Keywords:

a system of linear algebraic equations, ill-posed problems, ill-conditioned problems, condition number, regularization method

Downloads

Download data is not yet available.
 

References

Литература

Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1979.

Лисковец О.А. Вариационные методы решения неустойчивых задач. Минск: Наука и техника, 1981.

Иванов В.К., Васин В.В., Танана В.П. Теория линейных некорректных задач и ее приложения. М.: Наука, 1978.

Кабанихин С.И. Обратные и некорректные задачи. Новосибирск: Сибирское научное издательство, 2009.

Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. М.: Наука, 1984.

Михлин С. Г. Вариационные методы в математической физике. М.: Наука, 1970.

Михлин С.Г. Численная реализация вариационных методов. М.: Наука, 1966.

Гантмахер Ф.Р., Крейн М.Г. Осцилляционные матрицы и ядра и малые колебания механических систем. М.; Л.: ГИТТЛ, 1950.

Гантмахер Ф.Р. Теория матриц. М.: Наука, 1967.

Higham N.J. Functions of matrices: Theory and computation. Philadelphia: Society for Industrial and Applied Mathematics, 2008. https://doi.org/10.1137/1.9780898717778

Gautschi W. The Condition of a Matrix Arising in the Numerical Inversion of the Laplace Transform // Mathematics of Computation. 1969. Vol. 23, No. 105. P. 109–118. https://doi.org/10.1090/S0025-5718-1969-0239729-8

Бурова И.Г., Рябов В.М., Кальницкая М.А., Малевич А.В., Демьянович Ю.К. Программа для решения системы линейных алгебраических уравнений с положительно определенной матрицей методом регуляризации. Патент № 2018661356, 6.09.2018.


References

Tikhonov A.N., Arsenin V.Ya., Solutions of Ill-Posed Problems (Winston, 1977)

Liskovets O.A., Variational methods for solving unstable problems (Nauka i Tehnika Publ., Minsk, 1981). (In Russian)

Ivanov V.K., Vasin V.V., Tanana V.P., Theory of linear ill-posed problems and its applications (Nauka Publ., Moscow, 1978). (In Russian)

Kabanikhin S.I., Obratnye i nekorrektnye zadachi (Sibirskoe nauchnoe izdatelstvo, Novosibirsk, 2009). (In Russian)

Voevodin V.V., Kuznetsov Yu.A., Matrices and computations (Nauka Publ., Moscow, 1984). (In Russian)

Mikhlin S.G., Variational methods in mathematical physics (Pergamon Press, 1982).

Mikhlin S.G., The numerical performance of variational methods (Wolters-Noordhoff Publishing, Groningen, 1971).

Gantmakher F.R., Krein M.G., Oscillation matrices and kernels and small vibrations of mechanical systems (AMS Chelsea Publ., Providence, R. I., 2002). https://doi.org/10.1090/chel/345

Gantmakher F.R., The Theory of Matrices (Chelsea Publishing Company, 1989).

Higham N.J., Functions of matrices: Theory and computation (Society for Industrial and Applied Mathematics, Philadelphia, 2008). https://doi.org/10.1137/1.9780898717778

Gautschi W., “The Condition of a Matrix Arising in the Numerical Inversion of the Laplace Transform”, Mathematics of Computation 23(105), 109–118 (1969). https://doi.org/10.1090/S0025-5718-1969-0239729-8

Burova I.G., Ryabov V.M., Kalnitskaya M.A., Malevich A.V., Demjanovich Yu.K., Program for solving a system of linear algebraic equations with a positively defined matrix by the regularization method (Patent No. 2018661356, September 6, 2018). (In Russian)

Published

2019-11-28

How to Cite

Lebedeva, A. V., & Ryabov, V. M. (2019). On the numerical solution of system of linear algebraic equations with ill-conditioned matrices. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 6(4), 619–626. https://doi.org/10.21638/11701/spbu01.2019.407

Issue

Section

Mathematics

Most read articles by the same author(s)

1 2 > >>