Приближение целыми функциями на счетном объединении отрезков вещественной оси. 1. Формулировка результатов
Аннотация
Вопрос о приближении функций, непрерывных на подмножествах вещественной оси целыми функциями имеет долгую историю, начиная с теоремы Джексона-Бернштейна о приближении 2π-периодических функций тригонометрическими полиномами, которые естественно трактовать как целые функции экспоненциального типа. В настоящей статье мы занимаемся задачей, относящейся к концепции этой теоремы, описывающей классы функциональных пространств скоростью их возможного приближения целыми функциями. В качестве ключевых примеров укажем теорему С. Н. Бернштейна об описании класса ограниченных функций из классов Г¨ельдера на всей оси функциями экспоненциального типа. Принципиальным моментом является то, что скорость приближения в окрестности концов отрезков оказывается выше в той шкале, которая впервые появилась в теории приближения полиномами функций из классов Г¨ельдера на отрезке и позволила согласовать так называемые «прямые» и «обратные» теоремы для этого случая, т. е. восстанавливать г¨ельдеровскую гладкость по скорости приближения полиномами в этой шкале. В данной статье мы представим формулировку «прямой» теоремы о возможности приближения функций из классов Г¨ельдера на счетном объединении отрезков целыми функциями с определенной скоростью. Ранее такие приближения не рассматривались. Также мы дадим общие определения и приведем важнейшие леммы, используемые для дальнейшего построения приближающих функций. Во второй части работы мы представим доказательство «прямой» теоремы. В последующих работах, для получения конструктивного описания класса гладкости с помощью скорости приближения, мы сформулируем и докажем«обратную» теорему для этого случая. При выводе таких утверждений требуется, как правило, факт, аналогичный теореме С. Н. Бернштейна об оценке нормы производной целой функции через норму самой функции. В нашем случае будет необходимо утверждение, аналогичное теореме Н. И. Ахиезера и Б. Я. Левина об оценке целой функции на всей оси через ее значение на подмножестве оси. Библиогр. 4 назв.
Скачивания
Библиографические ссылки
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.