Влияние неоднородности магнитного поля Земли на динамику электродинамической тросовой системы

Авторы

  • Алексей Александрович Тихонов
  • Алексей Павлович Дериглазов

DOI:

https://doi.org/10.21638/spbu01.2020.316

Аннотация

Рассматривается электродинамическая тросовая система, функционирующая в режиме натянутой связки и движущаяся по круговой экваториальной околоземной орбите в условиях неоднородности магнитного поля Земли. Найден возможный режим движения связки, представляющий собой близкое к вертикальному равновесное положение в плоскости орбиты. Исследована устойчивость найденного положения относительного равновесия по линейному приближению. Представлены результаты численного моделирования некоторых соотношений для тросовой системы при варьировании ее параметров.

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки

Литература

1. Белецкий В.В., Левин Е.М. Динамика космических тросовых систем. М.: Наука, 1990.

2. Родников А.В., Красильников П. С. О пространственных движениях орбитальной леерной связки // Нелинейная динам. 2017. Т. 13, №4. С. 505–518. https://doi.org/10.20537/nd1704004

3. Forward R. L. Electrodynamic drag terminator tether, Appendix K of high strength-to-weight tapered Hoytether for LEO to GEO payload transport. Final Report on NASA SBIR Phase I Contract NAS8-40690, 10 July 1996.

4. Forward R. L., Hoyt R. P., Uphoff C. Application of the Terminator TetherTM electrodynamic drag technology to the deorbit of constellation spacecraft // 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition, Cleveland, OH, USA, July 13–15, 1998. Art. no. 98-3491. https://doi.org/10.2514/6.1998-3491

5. Forward R. L., Hoyt R. P. Terminator TetherTM: a spacecraft deorbit device // Journal of Spacecraft and Rockets. 2000. Vol. 37. P. 187–196. https://doi.org/10.2514/2.3565

6. Tethers in Space Handbook / Eds. by M. L.Cosmo, E.C. Lorenzini. 3rd ed. Cambridge, MA, USA: Smithsonian Astrophysical Observatory, 1997.

7. Vannaroni G., Dobrowolny M., De Venuto F. Deorbiting with electrodynamic tethers: comparison between different tether configurations // Space Debris. 1999. Vol. 1. P. 159–172. https://doi.org/10.1023/A:1012570808078

8. Iess L., Bruno C., Ulivieri C., Ponzi U., Parisse M., Laneve G., Vannaroni G., Dobrowolny M., De Venuto F., Bertotti B., Anselmo L. Satellite de-orbiting by means of electrodynamic tethers. Part I: general concepts and requirements // Acta Astronautica. 2002. Vol. 50. Iss. 7. P. 399–406. https://doi.org/10.1016/S0094-5765(01)00180-1

9. Iess L., Bruno C., Ulivieri C., Vannaroni G. Satellite de-orbiting by means of electrodynamic tethers. Part II: system configuration and performance // Acta Astronautica. 2002. Vol. 50. Iss. 7. P. 407–416. https://doi.org/10.1016/S0094-5765(01)00181-3

10. Ishige Y., Kawamoto S., Kibe S. Study on electrodynamic tether system for space debris removal // Acta Astronautica. 2004. Vol. 55. Iss. 11. P. 917–929. https://doi.org/10.1016/j.actaastro.2004.04.015

11. Yamaigiwa Y., Hiragi E., Kishimoto T. Dynamic behavior of electrodynamic tether deorbit system on elliptical orbit and its control by Lorentz force // Aerospace Science and Technology. 2005. Vol. 9. Iss. 4. P. 366–373. https://doi.org/10.1016/j.ast.2004.09.005

12. Zhong R., Zhu Z.H., Libration dynamics and stability of electrodynamic tethers in satellite deorbit // Celestial Mechanics and Dynamical Astronomy. 2013. Vol. 116. P. 279–298. https://doi.org/10.1007/s10569-013-9489-4

13. Levin E.M. Dynamic Analysis of Space Tether Missions. San Diego, California: American Astronautical Society, 2007. (Vol. 126 of Advances in the Astronautical Sciences.)

14. Pelaez J., Lorenzini E. C., Lopez-Rebollal O., Ruiz M. A new kind of dynamic instability in electrodynamic tethers // Advances in the Astronautical Sciences. San Diego, CA: Spaceflight Mechanics, AAS Publications, 2000. Vol. 105. P. 1367–1386.

15. Тихонов А.А. Об одной конструктивной схеме электродинамического троса для расширения возможностей и повышения эффективности решения задачи спуска ИСЗ с орбиты // Сборник трудов X международной конференции ¾Современные методы прикладной математики, теории управления и компьютерных технологий¿ (ПМТУКТ-2017), 18–24 сентября 2017, Воронеж. 2017. С. 347–350.

16. Тихонов А.А. Патент RU - №2666610 на изобретение ¾Устройство стабилизации электродинамической тросовой системы для удаления космического мусора¿ по заявке №2017129790. Приоритет 22.08.2017. Дата гос. Регистрации в Гос. Реестре изобретений РФ 11.09.2018.

17. Tikhonov A.A., Shcherbakova L. F. On equilibrium positions and stabilization of electrodynamic tether system in the orbital frame // The International Scientific Conference on Mechanics “The Eighth Polyakhov’s Reading”, 29 January - 2 February 2018, Saint Petersburg, Russia. 2018. Vol. 1959, art. no. 020001. (AIP Conference Proceedings.) https://doi.org/doi:10.1063/1.5034626

18. Тихонов А.А., Петров К. Г. Мультипольные модели магнитного поля Земли // Космические исследования. 2002. Т. 40, №3. С. 203–212.

19. Александров А.Ю., Тихонов А.А. Одноосная стабилизация вращательного движения твердого тела при наличии возмущений с нулевыми средними значениями // Вестник С.-Петерб. ун-та. Математика. Механика. Астрономия. 2019. Т. 6 (64). Вып. 2. С. 270–280. https://doi.org/10.21638/11701/spbu01.2019.209

20. Антипов К.А., Тихонов А.А. Мультипольные модели геомагнитного поля: построение N-го приближения // Геомагнетизм и аэрономия. 2013. Т. 53, №2. С. 257–267.

21. Белецкий В.В. Движение искусственного спутника относительно центра масс. М.: Наука, 1965.

22. Петров К.Г., Тихонов А.А. Момент сил Лоренца, действующих на заряженный спутник в магнитном поле Земли. Ч. 1: Напряженность магнитного поля Земли в орбитальной системе координат // Вестник С.-Петерб. ун-та. Сер. 1. Математика. Механика. Астрономия. 1999. Вып. 1. С. 92–100.

23. Ovchinnikov M.Yu., Penkov V. I., Roldugin D. S., Pichuzhkina A.V. Geomagnetic field models for satellite angular motion studies // Acta Astronautica. 2018. Vol. 144. P. 171–180. https://doi.org/10.1016/j.actaastro.2017.12.026

24. Тихонов А.А. Уточнение модели ¾наклонный диполь¿ в задаче об эволюции вращательного движения заряженного тела в геомагнитном поле // Космические исследования. 2002. Т. 40, №2. С. 157–162.

25. Петров К. Г., Тихонов А.А. Момент сил Лоренца, действующих на заряженный спутник в магнитном поле Земли. Ч. 2: Вычисление момента и оценки его составляющих // Вестник С.-Петерб. ун-та. Сер. 1. Математика. Механика. Астрономия. 1999. Вып. 15. С. 81–91.

26. Corsi J., Iess L. Stability and control of electrodynamic tether for de-orbiting applications // Acta Astronautica. 2001. Vol. 48. Iss. 5–12. P. 491–501. https://doi.org/10.1016/S0094-5765(01)00049-2

27. Akritas A. Elements of Computer Algebra with Applications. New York: Wiley-Interscience, 1989.

References

1. Beletsky V.V., Levin E.M., Dynamics of Space Tether Systems (Nauka Publ., Moscow, 1990). (In Russian)

2. Rodnikov A.V., Krasilnikov P. S., “On spacial motions of an orbital tethered system”, Nelineinaya Dinamika 13 (4), 505–518 (2017). https://doi.org/10.20537/nd1704004 (In Russian)

3. Forward R. L., Electrodynamic drag terminator tether, Appendix K of high strength-to-weight tapered Hoytether for LEO to GEO payload transport (Final Report on NASA SBIR Phase I Contract NAS8-40690, 10 July 1996).

4. Forward R. L., Hoyt R. P., Uphoff C., “Application of the Terminator TetherTM electrodynamic drag technology to the deorbit of constellation spacecraft”, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition, Cleveland, OH, USA, July 13–15, 1998, art. no. 98-3491. https://doi.org/10.2514/6.1998-3491

5. Forward R. L., Hoyt R.P., “Terminator TetherTM: a spacecraft deorbit device”, Journal of Spacecraft and Rockets 37, 187–196 (2000). https://doi.org/10.2514/2.3565

6. Tethers in Space Handbook (3rd ed., M. L.Cosmo, E.C. Lorenzini (eds.), Smithsonian Astrophysical Observatory, Cambridge, MA, USA, 1997).

7. Vannaroni G., Dobrowolny M., De Venuto F., “Deorbiting with electrodynamic tethers: comparison between different tether configurations”, Space Debris 1, 159–172 (1999). https://doi.org/10.1023/A:1012570808078

8. Iess L., Bruno C., Ulivieri C., Ponzi U., Parisse M., Laneve G., Vannaroni G., Dobrowolny M., De Venuto F., Bertotti B., Anselmo L., “Satellite de-orbiting by means of electrodynamic tethers. Part I: general concepts and requirements”, Acta Astronautica 50, iss. 7, 399–406 (2002). https://doi.org/10.1016/S0094-5765(01)00180-1

9. Iess L., Bruno C., Ulivieri C., Vannaroni G., “Satellite de-orbiting by means of electrodynamic tethers. Part II: system configuration and performance”, Acta Astronautica 50, iss. 7, 407–416 (2002). https://doi.org/10.1016/S0094-5765(01)00181-3

10. Ishige Y., Kawamoto S., Kibe S., “Study on electrodynamic tether system for space debris removal”, Acta Astronautica 55, iss. 11, 917–929 (2004). https://doi.org/10.1016/j.actaastro.2004.04.015

11. Yamaigiwa Y., Hiragi E., Kishimoto T., “Dynamic behavior of electrodynamic tether deorbit system on elliptical orbit and its control by Lorentz force”, Aerospace Science and Technology 9, iss. 4, 366–373 (2005). https://doi.org/10.1016/j.ast.2004.09.005

12. Zhong R., Zhu Z.H., “Libration dynamics and stability of electrodynamic tethers in satellite deorbit”, Celestial Mechanics and Dynamical Astronomy 116, 279–298 (2013). https://doi.org/10.1007/s10569-013-9489-4

13. Levin E.M., Dynamic Analysis of Space Tether Missions (American Astronautical Society, San Diego, California, 2007, vol. 126 of Advances in the Astronautical Sciences).

14. Pelaez J., Lorenzini E.C., Lopez-Rebollal O., Ruiz M., “A new kind of dynamic instability in electrodynamic tethers”, Advances in the Astronautical Sciences 105, 1367–1386 (Spaceflight Mechanics, AAS Publications, San Diego, CA, 2000).

15. Tikhonov A.A., “Ob odnoy konstruktivnoy skheme elektrodinamicheskogo trosa dlya rasshireniya vozmozhnostey i povysheniya effektivnosti resheniya zadachi spuska ISZ s orbity”, Sbornik trudov X mezhdunarodhoy nauchoy konferencii “Sovremennyye metody prikladnoy matematiki, teorii upravleniya i komp’yuternykh tekhnologiy”, September 18–24, 2017, Vorohezh, 347–350 (2017). (In Russian)

16. Tikhonov A.A., Device of stabilization of electrodynamic cable system for removing space waste. RU-2666610-C1, B64G-001/32; B64G-001/34 (Web of Science Derwent Сollection, No 2018-81465E).

17. Tikhonov A.A., Shcherbakova L.F., “On equilibrium positions and stabilization of electrodynamic tether system in the orbital frame”, The International Scientific Conference on Mechanics “The Eighth Polyakhov’s Reading”, 29 January - 2 February 2018, Saint Petersburg, Russia 1959, 020001 (AIP Conference Proceedings, 2018). https://doi.org/doi:10.1063/1.5034626

18. Tikhonov A.A., Petrov K.G., “Multipole models of the Earth’s magnetic field”, Cosmic Research 40 (3), 203–212 (2002). https://doi.org/10.1023/A:1015916718570

19. Aleksandrov A.Yu., Tikhonov A.A., “Uniaxial Attitude Stabilization of a Rigid Body under Conditions of Nonstationary Perturbations with Zero Mean Values”, Vestnik St.Petersb. Univ. Math. 52, iss. 2, 187–193 (2019). https://doi.org/10.1134/S106345411902002X

20. Antipov K.A., Tikhonov A.A., “Multipole Models of the Geomagnetic Field: Construction of the N-th Approximation”, Geomagnetism and Aeronomy 53 (2), 257–267 (2013). https://doi.org/10.1134/S0016793213020023

21. Beletsky V.V., Motion of an Artificial Satellite about its Center of Mass (Israel Program for Scientific Translation, Jerusalem, 1966).

22. Petrov K.G., Tikhonov A.A., “The moment of Lorentz forces, acting upon the charged satellite in the geomagnetic field. Part 1. The strength of the Earth’s magnetic field in the orbital coordinate system”, Vestnik of St. Petersburg University. Ser. 1. Mathematics. Mechanics. Astronomy, iss. 1, 92–100 (1999). (In Russian)

23. Ovchinnikov M.Yu., Penkov V. I., Roldugin D. S., Pichuzhkina A.V., “Geomagnetic field models for satellite angular motion studies”, Acta Astronautica 144, 171–180 (2018). https://doi.org/10.1016/j.actaastro.2017.12.026

24. Tikhonov A.A., “Refinement of the Oblique Dipole Model in the Evolution of Rotary Motion of a Charged Body in the Geomagnetic Field”, Cosmic Research 40 (2), 157–162 (2002). https://doi.org/10.1023/A:1015149420500

25. Petrov K.G., Tikhonov A.A., “The moment of Lorentz forces, acting upon the charged satellite in the geomagnetic field. Part 2. The determination of the moment and estimations of its components”, Vestnik of St. Petersburg University. Ser. 1. Mathematics. Mechanics. Astronomy, iss. 15, 81–91 (1999). (In Russian)

26. Corsi J., Iess L., “Stability and control of electrodynamic tether for de-orbiting applications”, Acta Astronautica 48 (5–12), 491–501 (2001). https://doi.org/10.1016/S0094-5765(01)00049-2

27. Akritas A., Elements of Computer Algebra with Applications (Wiley-Interscience, New York, 1989).

Загрузки

Опубликован

04.09.2020

Как цитировать

Тихонов, А. А., & Дериглазов, А. П. (2020). Влияние неоднородности магнитного поля Земли на динамику электродинамической тросовой системы. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 7(3), 539–551. https://doi.org/10.21638/spbu01.2020.316

Выпуск

Раздел

Механика

Наиболее читаемые статьи этого автора (авторов)