Figures of Pluto and Charon and their relative motion
DOI:
https://doi.org/10.21638/spbu01.2021.314Abstract
The comparative effect of two factors on the translatory motion of the centres of mass of the Pluto-Charon system is investigated. The first important factor is the non-sphericity of the shape and gravitational field of the bodies in the system. The second is the gravitation of the Sun. As a measure of the influence of both factors we use the ratio of the corresponding perturbing acceleration to the main one. The main acceleration is caused by the mutual Newtonian attraction of Pluto and Charon. It has been established that for the first factor this measure is of the order of 10^−6, while for the second factor it is two orders of magnitude smaller. This explains why the Lidov-Kozai effect (despite a large mutual slope of 96 between the planes of the satellite’s orbit around the planet, and the barycentre of the system around the Sun) does not appear. The situation is similar to the case with the satellites of Uranus. As a result, the Pluto-Charon system remains stable at least on a timescale of millions of years. The tidal effect of the Sun on the surface shape of the bodies under study is also estimated. The ratio of the tidal potential of the Sun at a point on the surface of the body to the gravitational potential of the body itself at this point is taken as a measure of impact. It turned out to be of the order of 3 · 10^−12, which is more than six orders less than the influence of rotation and mutual attraction of Pluto and Charon. In fact, the Sun does not affect the figures of the bodies of the system.Keywords:
planets, satellites, Pluto, Charon, equilibrium figures, Jacobi coordinates, Lidov-Kozai effect
Downloads
Download data is not yet available.
References
Литература
1. Weaver H.A., et al. The small satellites of Pluto as observed by New Horizons. Science 351 (6279), aae0030 (2016). https://doi.org/10.1126/science.aae0030
2. Nimmo F., Uurhan O., Lisse C.V., Bierson C. J., Lauer T.R., Buie M.W., Throop H.B., Kammer J.A., Roberts J.H., Mckinnon W.B., Zangari A.M., Moore J.M., Stern S.A., Young L.A., Weaver H.A., Olkin C.B., Ennico K. Mean radius and shape of Pluto and Charon from New Horizons images. Icarus 287, 12–29 (2017).
3. Stern S.A., Grundy W.M., McKinnon W.B., Weaver H.A., Young L.A. The Pluto System after New Horizons. ARA&A 56, 357–392 (2018).
4. Kholshevnikov K.V., Borukha M.A., Eskin B.B., Mikryukov D.V. On the asphericity of the figures of Pluto and Charon. Planet. Space Sci. 181, 10477 (2020).
5. Buie M.W., Grundy W.M., Young E.F., Young L.A., Stern S.A. Orbits and photometry of Pluto’s satellites: Charon, S/2005 P1 and S/2005 P2. The Astronomical Journal 132, 290–298 (2006).
6. Lidov M.L. The Evolution of Orbits of Artificial Satellites of Planets under the Action of Gravitational Perturbations of External Bodies. Planet. Space Sci. 9, 719–759 (1962).
7. Kozai Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591 (1962).
8. Shevchenko I.I. The Lidov - Kozai Effect - Applications in Exoplanet Research and Dynamical Astronomy. In: Astrophysics and Space Science Library, vol. 441. Switzerland, Springer (2017).
9. Поляхов Н.Н., Зегжда С.А., Юшков М.П. Теоретическая механика. Раздел второй. Динамика. Москва, Юрайт (2015).
10. Cline D. Variational principles in classical mechanics. Rochester, New York, University of Rochester Press (2017).
11. Appell P. Figures d’´equilibre d’une masse liquide homog´ene en rotation. Paris, Gauthier-Villars (1932).
12. Кондратьев Б.П. Теория потенциала и фигуры равновесия. Москва, Ижевск, ИКИ (2003). 13. Гобсон Е.В. Теория сферических и эллипсоидальных функций, пер. с англ. Москва, ИЛ (1952).
14. Антонов В.А., Тимошкова Е.И., Холшевников К.В. Введение в теорию ньютоновского потенциала. Москва, Наука (1988).
15. Brozov´ıc M., Showalter M.R., Jacobson R.A., Buie M.W. The orbits and masses of satellites of Pluto. Icarus 246, 317–329 (2015).
16. Cheng W.H., Lee M.H., Peale S.J. Complete tidal evolution of Pluto - Charon. Icarus 233, 242–258 (2014).
17. Antonov V.A., Kholchevnikov K.V. Die multidimensionale Ungleichung von Bernstein und die Absch¨atzung der Ableitungen des Gravitationspotentials. Astronomische Nachrichten 299 (3), 131–135 (1978).
18. Goossens S., Lemoine F.G., Sabaka T. J., Nicholas J.B., Mazarico E., Rowlands D.D., Loomis B.D., Chinn D. S., Neumann G.A., Smith D.E., Zuber M.T. A global degree and order 1200 model of the Lunar gravity field using GRAIL mission data. 47th Lunar and Planetary Science Conference (2016). Доступно на: https://www.hou.usra.edu/meetings/lpsc2016/pdf/1484.pdf (дата обращения: 26.05.2021).
19. Konopliv A. S., Park R. S., Vaughan A.T., Bills B.G., Asmar S.W., Ermakov A. I., Rambaux N., Raymond C.A., Castillo-Rogez J.C., Russell C.T., Smith D.E., Zuber M.T. The Ceres gravity field, spin pole, rotation period and orbit from the Dawn radiometric tracking and optical data. Icarus 299, 411–429 (2018).
20. Park R. S., Konopliv A. S., Bills B.G., Rambaux N., Castillo-Rogez J.C., Raymond C.A., Vaughan A.T., Ermakov A. I., Zuber M.T., Fu R.R., Toplis M. J., Russell C.T., Nathues A., Preusker F. A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature 537, 515–517 (2016). https://doi.org/10.1038/nature18955
21. Iess L., Stevenson D. J., Parisi M., Hemingway D., Jacobson R.A., Lunine J. I., Nimmo F., Armstrong J.W., Asmar S.W., Ducci M., Tortora P. The Gravity Field and Interior Structure of Enceladus. Science 344, 78–80 (2014). https://doi.org/10.1126/science.1250551
22. Thomas P.C. Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission. Icarus 208, 395–401 (2010).
23. Zannoni M., Hemingway D., Casajus L.G., Tortora P. The gravity field and interior structure of Dione. Icarus 345, 113713 (2020).
24. Iess L., Rappaport N. J., Tortora P., Lunine J. Gravity field and interior of Rhea from Cassini data analysis. Icarus 190, 585–593 (2007). https://doi.org/10.1016/j.icarus.2007.03.027
25. Caputo M. The Gravity Field of the Earth from Classical and Modern Methods. New York, Academic Press (1967).
26. Heiskanen W.A., Moritz H. Physical Geodesy. London, Freeman and Company (1967).
27. Субботин М.Ф. Введение в теоретическую астрономию. Москва, Наука (1968).
28. Холшевников К.В., Греб А.В., Кузнецов Э.Д. Разложение гамильтониана планетной задачи в ряд Пуассона по всем элементам (теория). Астрон. вестн. 35, вып. 3, 267–272 (2001).
29. Sadov S.Yu. Analytic properties of Hansen coefficients. Celestial Mechanics and Dynamical Astronomy 100 (4), 287–300 (2008). https://doi.org/10.1007/s10569-008-9123-z
30. Fominov A.M. Алгоритмы вычисления коэффициентов Ганзена, функций эксцентриситета и их производных. Transactions of IAA RAS. Iss. 5, 313–335 (2000).
31. Железнов Н.Б., Кочетова О.М., Кузнецов В.Б., Медведев Ю.Д., Чернетенко Ю.А., Шор В.А. Эфемериды малых планет на 2018 год. Санкт-Петербург, Изд-во ИПА (2017).
References
1. Weaver H.A., et al. The small satellites of Pluto as observed by New Horizons. Science 351 (6279), aae0030 (2016). https://doi.org/10.1126/science.aae0030
2. Nimmo F., Uurhan O., Lisse C.V., Bierson C. J., Lauer T.R., Buie M.W., Throop H.B., Kammer J.A., Roberts J.H., Mckinnon W.B., Zangari A.M., Moore J.M., Stern S.A., Young L.A., Weaver H.A., Olkin C.B., Ennico K. Mean radius and shape of Pluto and Charon from New Horizons images. Icarus 287, 12–29 (2017).
3. Stern S.A., Grundy W.M., McKinnon W.B., Weaver H.A., Young L.A. The Pluto System after New Horizons. ARA&A 56, 357–392 (2018).
4. Kholshevnikov K.V., Borukha M.A., Eskin B.B., Mikryukov D.V. On the asphericity of the figures of Pluto and Charon. Planet. Space Sci. 181, 10477 (2020).
5. Buie M.W., Grundy W.M., Young E.F., Young L.A., Stern S.A. Orbits and photometry of Pluto’s satellites: Charon, S/2005 P1 and S/2005 P2. The Astronomical Journal 132, 290–298 (2006).
6. Lidov M.L. The Evolution of Orbits of Artificial Satellites of Planets under the Action of Gravitational Perturbations of External Bodies. Planet. Space Sci. 9, 719–759 (1962).
7. Kozai Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591 (1962).
8. Shevchenko I.I. The Lidov - Kozai Effect - Applications in Exoplanet Research and Dynamical Astronomy. In: Astrophysics and Space Science Library, vol. 441. Switzerland, Springer (2017).
9. Polyakhov N.N., Zegzhda S.A., Yushkov M.P. Theoretical Mechanics. Section two. Dynamics. Moscow, Urait Publ. (2015). (In Russian)
10. Cline D. Variational principles in classical mechanics. Rochester, New York, University of Rochester Press (2017).
11. Appell P. Figures d’´equilibre d’une masse liquide homog´ene en rotation. Paris, Gauthier-Villars (1932).
12. Kondratiev B.P. Potential Theory, and Figures of Equilibrium. Moscow, Ijevsk, IKI Publ. (2003). (In Russian)
13. Hobson E.W. The Theory of Spherical and Ellipsoidal Harmonics. Cambridge, Cambridge Univ. Press (1931). [Russ. ed.: Teorija sfericheskih i jellipsoidal’nyh funkcij, Moscow, IL Publ. (1952)].
14. Antonov V.A., Timoshkova E. I., Kholshevnikov K.V. Introduction to the Theory of Newtonian Potential. Moscow, Nauka Publ. (1988). (In Russian)
15. Brozov´ıc M., Showalter M.R., Jacobson R.A., Buie M.W. The orbits and masses of satellites of Pluto. Icarus 246, 317–329 (2015).
16. Cheng W.H., Lee M.H., Peale S.J. Complete tidal evolution of Pluto - Charon. Icarus 233, 242–258 (2014).
17. Antonov V.A., Kholchevnikov K.V. Die multidimensionale Ungleichung von Bernstein und die Absch¨atzung der Ableitungen des Gravitationspotentials. Astronomische Nachrichten 299 (3), 131–135 (1978).
18. Goossens S., Lemoine F.G., Sabaka T. J., Nicholas J.B., Mazarico E., Rowlands D.D., Loomis B.D., Chinn D. S., Neumann G.A., Smith D.E., Zuber M.T. A global degree and order 1200 model of the Lunar gravity field using GRAIL mission data. 47th Lunar and Planetary Science Conference (2016). Available at: https://www.hou.usra.edu/meetings/lpsc2016/pdf/1484.pdf (accessed: May 26, 2021).
19. Konopliv A. S., Park R. S., Vaughan A.T., Bills B.G., Asmar S.W., Ermakov A. I., Rambaux N., Raymond C.A., Castillo-Rogez J.C., Russell C.T., Smith D.E., Zuber M.T. The Ceres gravity field, spin pole, rotation period and orbit from the Dawn radiometric tracking and optical data. Icarus 299, 411–429 (2018).
20. Park R. S., Konopliv A. S., Bills B.G., Rambaux N., Castillo-Rogez J.C., Raymond C.A., Vaughan A.T., Ermakov A. I., Zuber M.T., Fu R.R., Toplis M. J., Russell C.T., Nathues A., Preusker F. A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature 537, 515–517 (2016). https://doi.org/10.1038/nature18955
21. Iess L., Stevenson D. J., Parisi M., Hemingway D., Jacobson R.A., Lunine J. I., Nimmo F., Armstrong J.W., Asmar S.W., Ducci M., Tortora P. The Gravity Field and Interior Structure of Enceladus. Science 344, 78–80 (2014). https://doi.org/10.1126/science.1250551
22. Thomas P.C. Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission. Icarus 208, 395–401 (2010).
23. Zannoni M., Hemingway D., Casajus L.G., Tortora P. The gravity field and interior structure of Dione. Icarus 345, 113713 (2020).
24. Iess L., Rappaport N. J., Tortora P., Lunine J. Gravity field and interior of Rhea from Cassini data analysis. Icarus 190, 585–593 (2007). https://doi.org/10.1016/j.icarus.2007.03.027
25. Caputo M. The Gravity Field of the Earth from Classical and Modern Methods. New York, Academic Press (1967).
26. Heiskanen W.A., Moritz H. Physical Geodesy. London, Freeman and Company (1967).
27. Subbotin M.F. Introduction to Theoretical Astronomy. Moscow, Nauka Publ. (1968). (In Russian)
28. Kholshevnikov K.V., Greb A.V., Kuznetsov E.D. The Expansion of the Hamiltonian of the Planetary Problem into the Poisson Series in All Keplerian Elements (Theory). Astronomicheskii vestnik 35, iss. 3, 267–272 (2001). (In Russian) [Engl. transl.: Solar System Research 35, 243–248 (2001). https://doi.org/10.1023/A:1010487107989].
29. Sadov S.Yu. Analytic properties of Hansen coefficients. Celestial Mechanics and Dynamical Astronomy 100 (4), 287–300 (2008). https://doi.org/10.1007/s10569-008-9123-z
30. Fominov A.M. Algorithms of calculations of Hansen coefficients, eccentricity functions, and their derivatives. Transactions of IAA RAS, iss. 5, 313–335 (2000). (In Russian)
31. Zheleznov N.B., Kochetova O.M., Kuznetsov V.B., Medvedev Yu.D., Chernetenko Yu.A., Shor V.A. Ephemerides of minor planets for 2018. St. Petersburg, Inst. Appl. Astron. Press (2017). (In Russian)
Downloads
Published
2021-09-26
How to Cite
Kholshevnikov, K. V., Mikryukov, D. V., & Jazmati, M. S. (2021). Figures of Pluto and Charon and their relative motion. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8(3), 533–546. https://doi.org/10.21638/spbu01.2021.314
Issue
Section
Astronomy
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.