Backward iterations for solving integral equations with polynomial nonlinearity

Authors

  • Sergey M. Ermakov St Petersburg State University, 7–9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Tamara O. Surovikina St Petersburg State University, 7–9, Universitetskaya nab., St Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2022.103

Abstract

The theory of adjoint operators is widely used in solving applied multidimensional problems with Monte Carlo method. Efficient algorithms are constructed using the duality principle for many problems described in linear integral equations of the second kind. On the other hand, important applications of adjoint equations for designing experiments were suggested by G.Marchuk and his colleagues in their respective works. Some results obtained in these fields are also generalized to the case of nonlinear operators. Linearization methods were mostly used for that purpose. Results for Lyapunov-Schmidt nonlinear polynomial equations were obtained in the theory of Monte Carlo methods. However, many interesting questions in this subject area are remained open. New results about dual processes used for solving polynomial equations with Monte Carlo method are presented. In particular, an adjoint Markov process for the branching process and the corresponding unbiased estimate of the functional of the solution to the equation are constructed in a general form. The possibility of constructing an adjoint operator to a nonlinear one is discussed.

Keywords:

Monte Carlo method, dual estimate, Lyapunov-Schmidt nonlinear equations, balance equation, adjoint equations

Downloads

Download data is not yet available.
 

References

Литература

1. Марчук Г.И. Сопряженные уравнения и анализ сложных систем. Москва, Наука (1992).

2. Ермаков С.М. Об аналоге схемы Неймана-Улама в нелинейном случае. Журнал вычисл. матем. и матем. физики 13 (3), 564–573 (1973).

3. Некруткин В.В. Прямая и сопряженная схема Неймана-Улама для решения нелинейных интегральных уравнений. Журнал вычисл. матем. и матем. физики 14 (6), 1409–1415 (1974).

4. Гельфонд А.О. Исчисление конечных разностей. Москва, URSS (2018).

5. Ермаков С.М. Метод Монте-Карло в вычислительной математике: Вводный курс. Санкт-Петербург, Невский Диалект (2009).

6. Мысовских И.П. О сходимости метода Л.В.Канторовича для решения нелинейных функ- циональных уравнений и его применениях. Вестник Ленинградского университета. Серия 1. Ма- тематика. Механика. Астрономия, вып. 11, 25–48 (1953).

References

1. Marchuk G. I. Sopriazhennye uravneniia i analiz slozhnykh sistem. Moscow, Nauka Publ. (1992). (In Russian) [Eng. transl.: Marchuk G. I. Adjoint Equations and Analysis of Complex Systems. Netherlands, Springer (1995)].

2. Ermakov S.M. An Analogue of Neumann-Ulam Scheme in a Nonlinear Case. Journal of Numerical Mathematics and Mathematical Physics 13 (3), 564–573 (1973). (In Russian)

3. Nekrutkin V.V. Direct and Adjoint Neumann-Ulam Scheme for Solutions of Nonlinear Integral Equations. Journal of Numerical Mathematics and Mathematical Physics 14 (6), 1409–1415 (1974). (In Russian)

4. Gelfond A.О. Calculus of Finite Differences. Moscow, URSS Publ. (2018). (In Russian)

5. Ermakov S.M. Monte Carlo Method in Numerical Mathematics: An Introductory Course. StPetersburg, Nevskiy Dialect Publ. (2009). (In Russian)

6. Mysovskikh I.P. On the convergence of L.V.Kantorovich’s method for solving nonlinear functional equations and its applications. Vestnik of Leningrad University. Series 1. Mathematics. Mechanics. Astronomy, iss. 11, 25–48 (1953). (In Russian)

Published

2022-04-10

How to Cite

Ermakov, S. M., & Surovikina, T. O. (2022). Backward iterations for solving integral equations with polynomial nonlinearity. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(1), 23–36. https://doi.org/10.21638/spbu01.2022.103

Issue

Section

Mathematics