Стохастические вычислительные методы и планирование эксперимента
DOI:
https://doi.org/10.21638/spbu01.2023.201Аннотация
Работа содержит краткий обзор важнейших результатов, полученных сотрудниками кафедры статистического моделирования. Результаты включают математическое обоснование компьютерной имитации случайности, стохастических методов решения уравнений, стохастической оптимизации, исследование стохастической устойчивости и параллелизма алгоритмов метода Монте-Карло. В области планирования экспери- мента особое внимание уделено регрессионному эксперименту при нелинейной пара- метризации. В список литературы в основном включены монографии, написанные сотрудниками кафедры. Исключение составляют некоторые статьи с результатами, в них не вошедшими.Ключевые слова:
стохастика, Монте-Карло, оптимизация, параллелизм, планирование эксперимента, регрессия, нелинейная параметризация
Скачивания
Данные скачивания пока недоступны.
Библиографические ссылки
Литература
1. Metropolis N., Ulam S. The Monte-Carlo method. J. Amer. Stat. Assoc. 44 (247), 335-341 (1949).
2. Ермаков С. М. Метод Монте-Карло и смежные вопросы. Москва, Наука (1975).
3. Ермаков С. М., Михайлов Г. А. Статистическое моделирование. Москва, Наука (1982).
4. Ермаков С. М. Метод Монте-Карло в вычислительной математике: вводный курс. Москва, Бином (2009).
5. Nekrutkin V. V. On the complexity of binary floating point pseudorandom generator. Monte-Carlo methods and applications 22 (2), 109-111 (2016).
6. Nekrutkin V. V., Samachova M. Admissidle and аsymptotically optimal linear congruential generators. Monte-Carlo methods and applications 13 (3), 27-44 (2007).
7. Franclin J. N. Deterministic simulation of random processes. Math. Comp. 17, 28-59 (1963).
8. Ермаков С. М., Сипин А. С. Метод Монте-Карло и параметрически разделимые алгоритмы. Санкт-Петербург, Изд-во С.-Петерб. ун-та (2014).
9. Ermakov S. M., Wagner W. Monte-Carlo difference schemes for the wave equations. Monte-Carlo methods and applications 8 (1), 1-29 (2002).
10. Вагнер В., Ермаков С. М. Стохастическая устойчивость и параллелизм метода Монте-Карло. Доклады Академии наук 379 (4), 439-441 (2001).
11. Ермаков С. М., Беляева А. А. О методе Монте-Карло с запоминанием промежуточных результатов. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 3 (61), вып. 29, 5-8 (1996). https://doi.org/10.21638/11701/spbu01.2016.405
12. Ермаков С. М., Расулов А. С., Бакаев М. Т., Веселовская А. З. Избранные алгоритмы метода Монте-Карло. Ташкент, Университет (1992).
13. Ермаков С. М., Москалева Н. М. Ветвящиеся процессы и уравнение Больцмана. Вычисли тельные аспекты. Вестник Ленинградского университета. Математика. Механика. Астрономия 3 (15), 38-43 (1987).
14. Ермаков С. М., Некруткин В. В., Сипин А. С. Случайные процессы для решения задач математической физики. Москва, Наука (1984).
15. Ермаков С. М., Суровикина Т. О. Обратные итерации при решении интегральных уравнений с полиномиальнойнелинейностью. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 9 (67), вып. 1, 23-36 (2022). https://doi.org/10.21638/spbu01.2022.103
16. Ермаков С. М., СмиловицкийМ. Г. О методе Монте-Карло для решения больших систем линейных обыкновенных дифференциальных уравнений. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 8 (66), вып. 1, 37-48 (2021). https://doi.org/10.21638/spbu01.2021.104
17. Ермаков С. М., Товстик Т. М. Метод Монте-Карло для решения систем ОДУ. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 6 (64), вып. 3, 411-421 (2019). https://doi.org/10.21638/11701/spbu01.2019.306
18. Ермаков С. М., Каштанов Ю. Н. (ред.) Методы Монте-Карло в финансовой математике. Санкт-Петербург, Изд-во С.-Петерб. ун-та (2006).
19. Ермаков С. М., Куликов Д. В., Леора С. Н. К анализу метода имитации отжига в многоэкстремальном случае. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 4 (62), вып. 2, 220-226 (2017). https://doi.org/10.21638/11701/spbu01.2017.205
20. Ermakov S. M., Leora S. N. Decrease of the mean of the quasi-random integration error. Communications in Statistics: Simulation and Computation 50, iss. 11, 3581-3589 (2021).
21. Ермаков С. М., Рукавишникова А. И., Тимофеев К. А. О некоторых стохастических и квазистохастических методах решения уравнений. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 4 (1), 75-83 (2008).
22. Ermakov S. M., Melas V. B. Design and Analysis simulation Experiments. Dortrecht; Boston; London, Kluver Academic Publisher (1993).
23. Melas V. B. Functional Approach to Optimal Experimental Design. New York, Springer-Verlag (2006).
24. Мелас В. Б., Шпилев П. В. L-оптимальные планы для регрессионноймодели Фурье без свободного члена. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 9 (67), вып. 1, 64-75 (2022). https://doi.org/10.21638/spbu01.2022.107
25. Melas V. B., Guchenko R., Strashko V. Standardized maximin criterion for discrimination and parameter estimation of nested models. Communications in Statistics-Simulation and а Computation 51 (8), 4314-4325 (2022).
26. Dette H., Melas V. B., Shpilev P. V. A note on optimal designs for estimating the slope of a polynomial regression. Statistics and Probability Letters 170, 108992 (2021)
27. Dette H., Melas V. B., Shpilev P. V. Some explicit solutions of c-optimal design problems for polynomial regression with no intercept. Annals of the Institute of Statistical Mathematics 73 (1), 61-82 (2021).
28. Мелас В. Б., Шпилев П. В. Построение c-оптимальных планов для полиномиальнойрегрессии без свободного члена. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 7 (65), вып. 2, 331-342 (2020). https://doi.org/10.21638/11701/spbu01.2020.215
References
1. Metropolis N., Ulam S. The Monte-Carlo method. J. Amer. Stat. Assoc. 44 (247), 335-341 (1949).
2. Ermakov S. M. Monte-Carlo Method and related topics. Moscow, Nauka Publ. (1975). (In Russian)
3. Ermakov S. M., Mikhailov G. A. Stochastic Simulation. Moscow, Nauka Publ. (1982). (In Russian)
4. Ermakov S. M. Monte-Carlo in computational mathematic. Introductory course. Moscow, Binom Publ. (2009). (In Russian)
5. Nekrutkin V. V. On the complexity of binary floating point pseudorandom generator. Monte-Carlo methods and applications 22 (2), 109-111 (2016).
6. Nekrutkin V. V., Samachova M. Admissidle and аsymptotically optimal linear congruential generators. Monte-Carlo methods and applications 13 (3), 27-44 (2007).
7. Franclin J. N. Deterministic simulation of random processes. Math. Comp. 17, 28-59 (1963).
8. Ermakov S. M., Sipin A. S. Monte-Carlo Method and parametrically separable algorithms. St Petersburg, St Рetersburg University Press (2014). (In Russian)
9. Ermakov S. M., Wagner W. Monte-Carlo difference schemes for the wave equations. Monte-Carlo methods and applications 8 (1), 1-29 (2002).
10. Wagner W., Ermakov S. M. Stochastic stability and parallelism of Monte-Carlo Method. Doklady Akademii Nauk 379 (4), 439-441 (2001). (In Russian)
11. Ermakov S. M., Belyaeva A. A. About the Monte-Carlo method with intermediate memorization results. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 3 (61), 5-8 (1996). https://doi.org/10.21638/11701/spbu01.2016.405
12. Ermakov S. M., Rasulov A. S., Bakoev M. T., Veselovskaya A. Z. Selected algorithms of the Monte-Carlo method. Tashkent, University Publ. (1992). (In Russian)
13. Ermakov S. M., Moskaljova N. M. Branching processes and the Bolzmann equation. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 3 (15), 38-43. (1987) (In Russian)
14. Ermakov S. M., Nekrutkin V. V., Sipin A. S. Random Processes for Classical Equation of Mathematical Phisics. Moscow, Nauka Publ. (1984). (In Russian)
15. Ermakov S. M., Surovikina T. O. Backward iterations for solving integral equations with polynomial nonlinearity. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9 (67), iss. 1, 23-36. (2022). https://doi.org/10.21638/spbu01.2022.103 [Eng. transl.: Vestnik St Petersburg University. Mathematics 55, iss. 1, 16-26 (2022). https://doi.org/10.1134/S1063454122010046].
16. Ermakov S. M., Smilovitskiy M. G. Monte-Carlo for solving large linear systems ofordinary differential equations. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 8 (66), iss. 1, 37-48 (2021). https://doi.org/10.21638/spbu01.2021.104 (In Russian) [Eng. transl.: Vestnik St Petersburg University. Mathematics 54, iss. 1, 28-38 (2021). https://doi.org/10.1134/S106345412101].
17. Ermakov S. M.,Tovstik T. M. Monte-Carlo method for solution of systems ODE. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 6 (64), iss. 3, 411-421 (2019). https://doi.org/10.21638/11701/spbu01.2019.306 (In Russian) [Eng. transl.: Vestnik St Petersburg University. Mathematics 52, iss. 3, 272-280 (2019). https://doi.org/10.1134/S1063454119030087].
18. Ermakov S. M. Kashtanov J. N. (eds) Monte-Carlo method in financional mathematics. St Petersburg, St Рetersburg University Press (2006). (In Russian)
19. Kulikov D. V., Leora S. N., Ermakov S. M. Towards the Analysis of the simulated annealing method in the multiextremal case. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 4 (62), iss. 2, 220-226 (2017). https://doi.org/10.21638/11701/spbu01.2017.205 (In Russian) [Eng. transl.: Vestnik St Petersburg University. Mathematics 50, iss. 2, 132-137 (2017)].
20. Ermakov S. M., Leora S. N. Decrease of the mean of the quasi-random integration error. Communications in Statistics: Simulation and Computation 50, iss. 11, 3581-3589 (2021).
21. Ermakov S. M., Rukavichnikova A. I., Timofeev K. A. On some stochastic and quasistochastic methods for equanion solving. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 4 (1), 75-83. (2008). (In Russian) [Eng. transl.: Vestnik St Petersburg University. Mathematics 41, 348-354 (2008). https://doi.org/10.3103/S1063454108040109].
22. Ermakov S. M., Melas V. B. Design and Analysis simulation Experiments. Dortrecht; Boston; London, Kluver Academic Publisher (1993).
23. Melas V. B. Functional Approach to Optimal Experimental Design. New York, Springer-Verlag (2006).
24. Melas V. B., Shpilev P. V. L-optimal designs for a trigonometric Fourier regression model with no intercept. Vestnik of Saint Petersburg University. Mathematics. Mechanics.Astronomy 9 (67), iss. 1, 64-75 (2022). https://doi.org/10.21638/spbu01.2022.107 (In Russian) [Eng. transl.: Vestnik St Petersburg University. Mathematics 55, iss. 1, 48-56 (2022). https://doi.org/10.1134/S1063454122010095].
25. Melas V. B., Guchenko R., Strashko V. Standardized maximin criterion for discrimination and parameter estimation of nested models. Communications in Statistics-Simulation and а Computation 51 (8), 4314-4325 (2022).
26. Dette H., Melas V. B., Shpilev P. V. A note on optimal designs for estimating the slope of a polynomial regression. Statistics and Probability Letters 170, 108992 (2021)
27. Dette H., Melas V. B., Shpilev P. V. Some explicit solutions of c-optimal design problems for polynomial regression with no intercept. Annals of the Institute of Statistical Mathematics 73 (1), 61-82 (2021).
28. Melas V. B., Shpilev P. V. Constructing c-optimal designs for polynomial regression without an intercept. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 7 (65), iss. 2, 331-342 (2020). https://doi.org/10.21638/11701/spbu01.2020.215 (In Russian) [Eng. transl.: Vestnik St Petersburg University. Mathematics 53, iss. 2, 223-231 (2020). https://doi.org/10.1134/S1063454120020120].
Загрузки
Опубликован
10.05.2023
Как цитировать
Ермаков, С. М., & Мелас, В. Б. (2023). Стохастические вычислительные методы и планирование эксперимента. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 10(2), 187–199. https://doi.org/10.21638/spbu01.2023.201
Выпуск
Раздел
Математика
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.