Two-dimensional homogeneous cubic systems: classification and normal forms - III
Abstract
Данная статья является третьей в цикле работ, посвященном двумерным однородным кубическим системам. В ней рассматривается случай, когда однородный векторный многочлен в правой части системы имеет квадратичный общий множитель с вещественными нулями. Множество таких систем разбивается на классы линейной эквивалентности, в каждом из которых на основании определенным образом введенных структурных и нормировочных принципов выделяется простейшая система - нормальная форма третьего порядка. Фактически, нормальная форма задается матрицей коэффициентов своей правой части, которая называется канонической формой (КФ). Каждая КФ имеет свою структуру расположения ненулевых элементов, их определенную нормировку и каноническое множество допустимых значений для ненормированных элементов, гарантирующее принадлежность КФ к выбранному классу эквивалентности. Дополнительно для каждой КФ приводятся: а) условия на коэффициенты исходной системы, б) линейные неособые замены, преобразующие правую часть системы при этих условиях в выбранную КФ, в) получаемые значения ненормированных элементов КФ. Библиогр. 6 назв.
Downloads
References
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.