Analytical research of the Hopf bifurcation in the problem of motion of the rattleback

Authors

  • Alexander S. Kuleshov Lomonosov Moscow State University, 1, Leninskie Gory, Moscow, 119991, Russian Federation
  • Elizaveta N. Pikunova Lomonosov Moscow State University, 1, Leninskie Gory, Moscow, 119991, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2022.211

Abstract

We consider the classical problem of the nonholonomic system dynamics — the problem of motion of a heavy rigid body on an perfectly rough horizontal plane. The effect of loss of stability of permanent rotation of a body at a certain critical value of its angular velocity is discussed. It is proved that this effect is accompanied by the occurrence of periodic motions of the body with a frequency close to the critical value, that is, the Hopf bifurcation takes place. It is proved by direct calculation of the first Lyapunov coefficient that the corresponding periodic motions are unstable.

Keywords:

rattleback, rolling without sliding, permanent rotations, Hopf bifurcation

Downloads

Download data is not yet available.
 

References

Литература

1. Карапетян А.В. Бифуркация Хопфа в задаче о движении тяжелого твердого тела по шероховатой плоскости. Изв. АН СССР. Механ. тв. тела, №2, 19–24 (1985).

2. Маркеев А.П. О динамике твердого тела на абсолютно шероховатой плоскости. Прикл. мат. и механ. 47 (4), 575–582 (1983).

3. Борисов А. В., Мамаев И.С. Странные аттракторы в динамике кельтских камней. Успехи физ. наук 173 (4), 407–418 (2003). https://doi.org/10.3367/UFNr.0173.200304d.0407

4. Товстик Т.П. Динамика кельтского камня при наличии сопротивлений. Избранные труды международной научной конференции «Четвертые Поляховские чтения», Санкт-Петербург, 7– 10 февраля 2006 г., 187–196 (2006).

5. Tovstik T.P. On the influence of sliding on the Celt rattleback motion. Proceedings of XXXV International Summer School Conference APM, StPetersburg, 2007, 432–437 (2007).

6. Малкин И. Г. Теория устойчивости движения. Москва, Наука (1966).

7. Марсден Дж., Мак-Кракен М. Бифуркация рождения цикла и ее приложения, пер. с англ . Москва, Мир (1980).

8. Баутин Н.Н. Поведение динамических систем вблизи границ области устойчивости. Москва, Наукa (1984).

9. Леонов Г.А., Кузнецов Н.В., Кудряшова Е. В. Циклы двумерных систем. Компьютерные вычисления, доказательства, эксперименты. Вестник Санкт-Петербургского университета. Сер. 1. Математика. Механика. Астрономия, вып. 3, 26–61 (2008).

References

1. Karapetyan A.V. Hopf bifurcation in the problem of motion of a heavy rigid body on a rough plane. Mechanics of Solids, no. 2, 19–24 (1985). (In Russian)

2. Markeev A.P. The Dynamics of a Rigid Body on an Absolutely Rough Plane. Prikladnaya matematika i mekhanika 47 (4), 575–582 (1983). (In Russian) [Eng. transl.: J. Appl. Math. Mech. 47 (4), 473–478 (1983)].

3. Borisov A.V., Mamaev I. S. Strange attractors in rattleback dynamics. Uspekhi fizicheskikh nauk 173 (4), 407–418 (2003). https://doi.org/10.3367/UFNr.0173.200304d.0407 (In Russian) [Eng. transl.: Phys. Usp. 46 (4), 393–403 (2003). https://doi.org/10.1070/PU2003v046n04ABEH001306].

4. Tovstik T.P. On the dynamics of the Celt rattleback with frictions. Proceedings of the IV Polyakhov readings, StPetersburg, 7–10 February 2006, 187–196 (2006). (In Russian)

5. Tovstik T. P. On the influence of sliding on the Celt rattleback motion. Proceedings of XXXV International Summer School Conference APM, StPetersburg, 2007, 432–437 (2007).

6. Malkin I.G. Theory of Stability of Motion. Moscow, Nauka Publ. (1966). (In Russian)

7. Marsden J. E., McCracken M. The Hopf Bifurcation and Its Applications. New York, Heidelberg, Berlin, Springer (1976). [Rus. ed.: Marsden J. E., McCracken M. Bifurkacija rozhdenija cikla i ee prilozhenija. Moscow, Mir Publ. (1980)].

8. Bautin N. N. The behavior of dynamical systems near the limits of the stability region. Moscow, Nauka Publ. (1984). (In Russian)

9. Leonov G. A., Kuznetsov N. V., Kudryashova E.V. Cycles of two-dimensional systems: Computer calculations, proofs, and experiments. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, iss. 3, 26–61 (2008). (In Russian) [Eng. transl.: Vestnik St Petersburg University, Mathematics 41, 216 (2008). https://doi.org/10.3103/S1063454108030047].

Published

2022-07-06

How to Cite

Kuleshov, A. S., & Pikunova, E. N. (2022). Analytical research of the Hopf bifurcation in the problem of motion of the rattleback. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(2), 305–316. https://doi.org/10.21638/spbu01.2022.211

Issue

Section

Mechanics

Most read articles by the same author(s)