О качении параболоида вращения по неподвижной абсолютно шероховатой плоскости
Аннотация
Рассматривается классическая задача динамики неголономных систем - задача окачении динамически симметричного тела, ограниченного поверхностью вращения, по неподвижной горизонтальной плоскости без проскальзывания. Доказано, что данная задача может быть полностью решена в случае, когда движущееся твердое тело является параболоидом вращения. Дано качественное описание движенияпараболоида поплоскости. Показано, что следом точки касания M на поверхности параболоида будет кривая, состоящая из периодически повторяющихся волн и прикасающаяся поочередно к двум параллелям параболоида. След точки касания на неподвижной плоскости образует кривую такого же характера, заключенную между двумя концентрическими окружностями, которых точка M поочередно касается при движениипараболоида. Описаны все стационарные движения параболоида (перманентные вращения и регулярные прецессии) и доказано, что все они являются устойчивыми.
Ключевые слова:
параболоид вращения, анализ квадратур, стационарные движения, устойчивость
Скачивания
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.