Asymptotic normality in the problem of selfish parking

Authors

  • Sergey M. Ananjevskii St. Petersburg State University, Universitetskaya nab., 7–9, St. Petersburg, 199034, Russian Federation
  • Nikolay A. Kryukov St. Petersburg State University, Universitetskaya nab., 7–9, St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu01.2019.405

Abstract

In the present work we continue to study one of the models of a discrete analogue of the Renyi problem, known as the “parking problem”. Let n, i be integers satisfying n ≥ 0 and 0 ≤ in − 1. We place an open interval (i, i + 1) in the segment [0, n] with i being a random variable taking values 0, 1, 2, . . . , n − 1 with equal probability for all n ≥ 2. If n < 2 we say that the interval does not fit. After placing the first interval two free segments [0, i] and [i + 1, n] are formed and independently filled with the intervals of unit length according to the same rule, etc. At the end of the filling process the distance between any two adjacent unit intervals is at most 1. Let Xn denote the number of the unit intervals placed. In the previous work of the authors, published in 2018, the asymptotic behavior of the first moments of the random variable Xn was studied. In contrast to the classical case, the exact expressions were obtained for the expectation, variance, and third central moments. In this paper the asymptotic behavior of all central moments of the random variable Xn is studied and the asymptotic normality is proved for Xn.

Keywords:

random filling, discrete “parking” problem, asymptotic behavior of moments, asymptotic normality

Downloads

Download data is not yet available.
 

References

Литература

Ананьевский С.М., Крюков Н.А. Задача об эгоистичной парковке // Вестн. С.-Петерб. ун-та. Математика. Механика. Астрономия. 2018. Т. 5 (63). Вып. 4. С. 549–555. https://doi.org/10.21638/11701/spbu01.2018.402

Renyi A. On a one-dimensional problem concerning space-filling // Publ. of the Math. Inst. of Hungarian Acad. of Sciences. 1958. Vol. 3. P. 109–127.

Dvoretzky A., Robbins H. On the “parking” problem // Publ. of the Math. Inst. of Hungarian Acad. of Sciences. 1964. Vol. 9. P. 209–226.

Ney P.E. A random interval filling problem // Annals of Math. Statist. 1962. Vol. 33. P. 702–718. https://doi.org/10.1214/aoms/1177704592

Clay M.P., Simanyi N.J. Renyi’s parking problem revisited // ArXiv:1406.1781v1[math.PR] 29 Dec 2014

Gerin L. The Page-Renyi parking process // ArXiv:1411.8002v1[math.PR] 28 Nov 2014

Billingsley P. Probability and Measure. Third Edition, New York: A Wiley-Interscience Publication, John Wiley Sons, 1985.

Ананьевский С.М. Некоторые обобщения задачи о «парковке» // Вестн. С.-Петерб. ун-та. Сер. 1. Математика. Механика. Астрономия. 2016. Т. 3 (61). Вып. 4. С. 525–532. https://doi.org/10.21638/11701/spbu01.2016.401

Ananjevskii S.M. The “parking” problem for segments of different length // Journal of Mathematical Sciences. 1999. Vol. 93. P. 259–264. https://doi.org/10.1007/BF02364808


References

Ananjevskii S.M., Kryukov N.A., “The problem of selfish parking”, Vestnik St. Petersburg University: Mathematics 51, issue 4, 322–326 (2018). https://doi.org/10.21638/11701/spbu01.2018.402

Renyi A., “On a one-dimensional problem concerning space-filling”, Publ. of the Math. Inst. of Hungarian Acad. of Sciences 3, 109–127 (1958).

Dvoretzky A., Robbins H., “On the “parking” problem”, Publ. of the Math. Inst. of Hungarian Acad. of Sciences 9, 209–226 (1964).

Ney P.E., “A random interval filling problem”, Annals of Math. Statist. 33, 702–718 (1962). https://doi.org/10.1214/aoms/1177704592

Clay M.P., Simanyi N. J., “Renyi’s parking problem revisited”, ArXiv:1406.1781v1[math.PR] 29 Dec 2014

Gerin L., “The Page-Renyi parking process”, ArXiv:1411.8002v1[math.PR] 28 Nov 2014

Billingsley P., Probability and Measure (Third Edition, A Wiley-Interscience Publication, John Wiley Sons, New York, 1985).

Ananjevskii S.M., “Generalizations of the parking problem”, Vestnik St. Petersburg University: Mathematics 49, issue 4, 299–304 (2016). https://doi.org/10.3103/S1063454116040026

Ananjevskii S.M., “The “parking” problem for segments of different length”, Journal of Mathematical Sciences 93, 259–264 (1999). https://doi.org/10.1007/BF02364808

Published

2019-11-28

How to Cite

Ananjevskii, S. M., & Kryukov, N. A. (2019). Asymptotic normality in the problem of selfish parking. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 6(4), 592–607. https://doi.org/10.21638/11701/spbu01.2019.405

Issue

Section

Mathematics

Most read articles by the same author(s)