On torsion theories, weight and t-structures in triangulated categories

Authors

  • Mikhail V. Bondarko
  • Sergei V. Vostokov

Abstract

Работа посвящена триангулированным категориям и теориям кручения в них. Мы сравниваем два разных определения теорий кручения. Мы также рассматриваем два важнейших случая этого понятия - весовые и t-структуры (и допустимые триангулированные подкатегории). Одна из целей работы - показать, что ряд основных определений и свойств весовых и t-структур естественным образом обобщается на произвольные теории кручения (в частности, мы определяем для них понятия приведенности и коприведенности); это позволяет оптимизировать некоторые доказательства. Аналогичным образом обобщаются понятия ортогональных и соседствующих весовых и t-структур. Мы связываем соседство теорий кручения с двойственностью Брауна- Коменца и функторами Серра; возможно, эти результаты будут применены к изучению t-структур в компактно порожденных триангулированных категориях и в производных категориях когерентных пучков. Кроме того, в нашей работе описывается связь между теориями кручения и проективными классами.

Downloads

Download data is not yet available.

References

1. Beilinson A., Bernstein J., Deligne P. Faisceaux pervers // Asterisque. 1982. Vol.100. P.5–171.

2. Bondarko M. Weight structures vs. t-structures; weight filtrations, spectral sequences, andcomplexes (for motives and in general) // J. of K-theory. 2010. Vol.6, no.3. P.387–504. См. такжеhttp://arxiv.org/abs/0704.4003 (дата обращения: 27.10.2018).

3. Pauksztello D. Compact cochain objects in triangulated categories andco-t-structures //CentralEuropean J. of Math. 2008. Vol.6, no.1. P.25–42.

4. Bondarko M.V., Sosnilo V.A. On constructing weight structures and extending them to idem-potent extensions // Homology, Homotopy and Appl. 2018. Vol.20, no.1. P.37–57.

5. Iyama O., Yoshino Y. Mutation in triangulated categories and rigid Cohen–Macaulay modules// Inv. math. 2008. Vol.172, no.1. P.117–168.

6. Bondarko M.V. On morphisms killing weights, weight complexes, and Eilenberg-Maclane(co)homology of spectra. Препринт. 2015. http://arxiv.org/abs/1509.08453 (дата обращения:27.10.2018).

7. Бондал А.И., Капранов М.М. Представимые функторы, функторы Серра и перестройки// Изв. АН СССР. Сер. матем. 1989. Т.53, №6. С.1183–1205.

8. Christensen J. Ideals in triangulated categories: phantoms, ghosts and skeleta // Adv. in Math.1998. Vol.136, no.2. P.284–339.

9. Neeman A. Triangulated Categories. Vol.148. In: Annals of Mathematics Studies. PrincetonUniversity Press, 2001. viii+449 pp.

10. Beligiannis A. Relative homology, higher cluster-tilting theory and categorified Auslan-der–Iyama correspondence // J. of Algebra. 2015. Vol.444. P.367–503.

11. Bondarko M.V., Motivically functorial coniveau spectral sequences; direct summands of coho-mology of function fields//Doc.Math.,extra volume:AndreiSuslin’sSixtiethBirthday.2010.P.33–117.Cм. также http://arxiv.org/abs/0812.2672 (дата обращения: 27.10.2018).

12. Bondarko M.V. Gersten weight structures for motivic homotopy categories; retracts of coho-mology of function fields, motivic dimensions, and coniveau spectral sequences. Препринт. 2018.https://arxiv.org/abs/1803.01432 (дата обращения: 27.10.2018).ˇˇ

13. Pospisil D., Stov´ıˇcek J. On compactly generated torsion pairs and the classification of co-t-structures for commutative Noetherian rings // Trans. Amer. Math. Soc. 2016. Vol.368. P.6325–6361.ˇˇ

14. Saorin M., Stov´ıˇcek J. On exact categories and applications to triangulated adjoints and modelstructures // Adv. Math. 2011. Vol.228, no.2. P.968–1007.

15. Bondarko M.V., Sosnilo V.A., On purely generated α-smashing weight structures and weight-exact localizations. Препринт. 2017. http://arxiv.org/abs/1712.00850 (дата обращения: 27.10.2018).

16. Bondarko M.V., Sosnilo V.A. On the weight lifting property for localizations of triangulatedcategories // Lobachevskii J. of Math. 2018. Vol.39, no.7. P.970–984.

17. Krause H.A Brown representability theorem via coherent functors // Topology. 2002. Vol.41,no.4. P.853–861.

18. Keller B.A remark on the generalized smashingconjecture //Manuscripta Math.1994. Vol.84,no.1. P.193–198.

Published

2020-08-17

How to Cite

Bondarko, M. V., & Vostokov, S. V. (2020). On torsion theories, weight and t-structures in triangulated categories. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 6(1), 27–43. Retrieved from https://math-mech-astr-journal.spbu.ru/article/view/8429

Issue

Section

Mathematics

Most read articles by the same author(s)