On torsion theories, weight and t-structures in triangulated categories
Abstract
Работа посвящена триангулированным категориям и теориям кручения в них. Мы сравниваем два разных определения теорий кручения. Мы также рассматриваем два важнейших случая этого понятия - весовые и t-структуры (и допустимые триангулированные подкатегории). Одна из целей работы - показать, что ряд основных определений и свойств весовых и t-структур естественным образом обобщается на произвольные теории кручения (в частности, мы определяем для них понятия приведенности и коприведенности); это позволяет оптимизировать некоторые доказательства. Аналогичным образом обобщаются понятия ортогональных и соседствующих весовых и t-структур. Мы связываем соседство теорий кручения с двойственностью Брауна- Коменца и функторами Серра; возможно, эти результаты будут применены к изучению t-структур в компактно порожденных триангулированных категориях и в производных категориях когерентных пучков. Кроме того, в нашей работе описывается связь между теориями кручения и проективными классами.
Downloads
References
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.