A new approach to finding the control transporting a system from one phase state to another

Authors

  • Sergey A. Zegzhda St. Petersburg State University, Universitetskaya nab., 7-9, St. Petersburg, 199034, Russian Federation;
  • Egor A. Shatrov St. Petersburg State University, Universitetskaya nab., 7-9, St. Petersburg, 199034, Russian Federation;
  • Mikhail P. Yushkov St. Petersburg State University, Universitetskaya nab., 7-9, St. Petersburg, 199034, Russian Federation;

DOI:

https://doi.org/10.21638/11701/spbu01.2016.212

Abstract

In their previous papers the authors have considered a possibility of application of the theory of motion for nonholonomic systems with high-order constraints to solving one of the main problems of the control theory. This is a problem of transporting a mechanical system with the finite number of degrees of freedom from a given phase state to another given phase state during a fixed time. It was shown that when solving such a problem using the Pontryagin maximum principle with minimization of the integral of the control force squared, a nonholonomic high-order constraint is realized continuously during the motion of the system. But in this case, one can also apply a generalized Gauss principle, which is commonly used in the motion of nonholonomic systems with high-order constraints. It is essential that the latter principle makes it possible to find the control as a polynomial, while the use of the Pontryagin maximum principle yields the control containing harmonics with natural frequencies of the system. The latter fact determines increasing the amplitude of oscillation of the system if the time of motion is long. Besides this, a generalized Gauss principle allows us to formulate and solve extended boundary problems in which along with the conditions for generalized coordinates and velocities at the beginning and at the end of motion, the values of anyorder derivatives of the coordinates are introduced at the same time instants. This makes it possible to find the control without jumps at the beginning and at the end of motion. The theory presented has been demonstrated when solving the problem of the control of horizontal motion of a trolley with pendulums. A similar problem can be considered as a model, since when the parameters are chosen correspondingly it becomes equivalent to the problem of suppression of oscillations of a given elastic body some cross-section of which should move by a given distance in a fixed time. Equivalence of these problems widens essentially a range of possible applications of the problem of a trolley with pendulums. Earlier solving the problem has been reduced to the choice of a horizontal force that is a solution of the problem formulated. In the present paper it is offered to seek an acceleration of a trolley, with which it moves by a given distance in a fixed time, as a time function but not a force applied to the trolley, the velocities and accelerations being equal to zero at the beginning and at the end of motion. In this new problem the rotation angles of pendulums are the principal coordinates. This makes it possible to find a sought acceleration of a trolley on the basis of a generalized Gauss principle according to the technique developed before. Knowing the motion of a trolley and pendulums it is easy to

Downloads

Download data is not yet available.
 

References

Литература

1. Моисеев Н.Н., Иванилов Ю.П., Столярова Е.М. Методы оптимизации. М.: Наука, 1978. 352 с.

2. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Наука, 1983. 392 с.

3. Черноусько Ф.Л., Баничук Н.В. Вариационные задачи механики и управления. Численные методы. М.: Наука, 1973. 238 с.

4. Беллман Р. Динамическое програмирование. М.: Изд-во иностр. лит., 1960. 400 с.

5. Черноусько Ф.Л., Акуленко Л.Д., Соколов Б.Н. Управление колебаниями. М.: Наука, 1980. 384 с.

6. Поляхов Н.Н., Зегжда С.А., Юшков М.П. Обобщение принципа Гаусса на случай неголономных систем высших порядков // Докл. АН СССР. 1983. Т. 269, № 6. С. 1328-1330.

7. Юшков М.П., Зегжда С.А., Солтаханов Ш.Х., Пашкина А.А. О связи теории управления с неголономной механикой // Вестник С-Петерб. ун-та. Сер. 1. 2014. Т. 1(59), вып. 4. С. 609-618.

8. Костин Г.В., Саурин В.В. Интегродифференциальный подход к решению задач линейной теории упругости // Доклады академии наук. 2005. Т. 404, № 5. С. 628-631.

9. Костин Г.В., Саурин В.В. Моделирование и оптимизация движений упругих систем методом интегродифференциальных соотношений // Доклады академии наук. 2006. Т. 408, № 6. С. 750-753.

10. Чуев М.А. Дифференциальные уравнения програмных движений механической системы // Изв. РАН. 2008. № 1. С. 179-192.

11. Гаврилов Д.Н., Зегжда С.А. Гашение колебаний упругого тела при его перемещении // Вестник С-Петерб. ун-та. Сер. 1. 2012. Вып. 3. С. 73-83.

References

1. Moiseev N. N., Ivanilov Yu.P., Stolyarova E.M., Optimization methods (Nauka, Moscow, 1978, 352 p.) [In Russian].

2. Pontryagin L. S., Boltyanskiy V.G., Gamkrelidze R. V., Mishchenko E.F., Mathematical theory of optimal processes (Nauka, Moscow, 1983, 392 p.) [In Russian].

3. Chernous’ko F. L., Banichuk N.V., Variational problems in mechanics and control. Numerical methods (Nauka, Moscow, 1973, 238 p.) [In Russian].

4. Bellman R., Dynamic programming (Princeton Univ. Press, 2010, 392 p.).

5. Chernous’ko F. L., Akulenko L. D., Sokolov B.N., Control of oscillation (Nauka, Moscow, 1980, 384 p.) [In Russian].

6. Polyakhov N.N., Zegzhda S.A., Yushkov M.P., “Generalization of the Gauss principle to the case of nonholonomic high-order systems”, Dokl. AN. SSSR 269(6), 1328–1330 (1983) [In Russian].

7. Yushkov M.P., Zegzhda S.A., Soltakhanov Sh.Kh., Pashkina A.A., “On relationship between the control theory and nonholonomic mechanics”, Vestnik Saint-Petersburg University. Mathematics 47, Issue 4, 181–188 (2014).

8. Kostin G. V., Saurin V.V., “Integrodifferential approach to solving problems of linear elasticity theory”, Doklady Physics 50(10), 535–538 (2005).

9. Kostin G.V., Saurin V.V., “Modeling and optimization of elastic system motion by the method of integrodifferential relations”, Doklady Mathematics 73(3), 469–472 (2006).

10. Chuev M.A., “Differential equations for program motion of a mechanical system”, Mech. Solids 43(1), 153–164 (2008).

11. Zegzhda S.A., Gavrilov D.N., “Suppression of vibration of an elastic body when it moves”, Vestn. St.Petersb. un-ta. Ser. 1, Issue 3, 73–83 (2012) [In Russian].

Published

2020-10-19

How to Cite

Zegzhda, S. A., Shatrov, E. A., & Yushkov, M. P. (2020). A new approach to finding the control transporting a system from one phase state to another. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 3(2), 1. https://doi.org/10.21638/11701/spbu01.2016.212

Issue

Section

Mechanics

Most read articles by the same author(s)