Stationary reversibles processes MA and ARMA

Authors

  • Tatiana M. Tovstik St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2023.307

Abstract

The term mathematical diagnostics was introduced by V. F. Demyanov in the early 2000s. The simplest problem of mathematical diagnostics is to determine the relative position of a certain point p and the convex hull C of a finite number of given points in n-dimensional Euclidean space. Of interest is the answer to the following questions: does the point p belong to the set C or not? If p does not belong to C, then what is the distance from p to C? In general problem of mathematical diagnostics two convex hulls are considered. The question is whether they have common points. If there are no common points, then it is required to find the distance between these hulls. From an algorithmic point of view, the problems of mathematical diagnostics are reduced to special problems of linear or quadratic programming, for the solution of which there are finite methods. However, when implementing this approach in the case of large data arrays, serious computational difficulties arise. Infinite but easily implemented methods come to the rescue, which allow obtaining an approximate solution with the required accuracy in a finite number of iterations. These methods include the MDM method. It was developed by Mitchell, Demyanov and Malozemov in 1971 for other purposes, but later found application in machine learning. From a modern point of view, the original version of the MDM method can be used to solve the simplest problems of mathematical diagnostics. This article gives a natural generalization of the MDM-method, oriented towards solving general problems of mathematical diagnostics. The equivalence of the general problem of mathematical diagnostics and the problem of linear separation of two finite sets with the largest width of the margin is established.

Keywords:

stationary reversible processes MA, ARMA, estimation of process parameters

Downloads

Download data is not yet available.
 

References

Литература

1. Хеннан Э. Многомерные временные ряды. Москва, Мир (1974).

2. Дурбин Д. Эффективное оценивание параметров модели скользящего среднего. Biometrika 46, 306-316, 1959.

3. Андерсон Т. Статистический анализ временных рядов. Москва, Мир (1976).

4. Kavalieris. A Not on Estimating Autoregressive-Moving average Order. Biometrika 78, 920-922 (1991).

5. Товстик Т. М. Об оценке параметров корреляционнойфункции стационарного случайного процесса. Кибернетика 6, 131-136 (1975).

6. Товстик Т. М. Стационарные случайные процессы с рациональными спектральными плотностями. СПб.: Изд-во С.-Петерб. ун-та (2000).

7. Mehdizadeh S. Using AR, MA, and ARMA Time Series Models to Improve the Performance of MARS and KNN Approaches in Monthly Precipitation Modeling under Limited Climatic Data. Water Resources Management 34, 263-282 (2020).

8. Salih Katircioglu, Tezcan Abasiz, Sevgi Sezer & Setareh Katircioglu. Volatility of the alternative energy input prices and spillover effects: a VAR [MA]-MGARCH in BEKK approach for the Turkish economy. Environmental Science and Pollution Research 26, 10738-10745 (2019).

References

1. Hannan E. J. Multiple time series. John Wiley and Sons (1970) [Rus. ed.: Hannan E. J. Mnogomernye vremennye riady. Moscow, Mir Publ. (1974)].

2. Durbin J. Efficient estimation of parameters in moving-average model. Biometrika 46, 306-316 (1959).

3. Anderson T.W. The statistical analysis of time series. John Wiley & Sons (1971). [Rus. ed.: Anderson T.W. Statisticheskii analiz vremennykh riadov. Moscow, Mir Publ. (1976)].

4. Kavalieris. A Not on Estimating Autoregressive-Moving average Order. Biometrika 78, 920-922 (1991).

5. Tovstik T. M. On estimating the parameters of the correlation function of a stationary random process. Cibernetics 6, 131-136 (1975).

6. Tovstik T. M. Stationary random processes with rational spectral densities. St. Petersburg, St. Рetersburg University Press (2000). (In Russian)

7. Mehdizadeh S. Using AR, MA, and ARMA Time Series Models to Improve the Performance of MARS and KNN Approaches in Monthly Precipitation Modeling under Limited Climatic Data. Water Resources Management 34, 263-282 (2020).

8. Salih Katircioglu, Tezcan Abasiz, Sevgi Sezer & Setareh Katircioglu. Volatility of the alternative energy input prices and spillover effects: a VAR [MA]-MGARCH in BEKK approach for the Turkish economy. Environmental Science and Pollution Research 26, 10738-10745 (2019).

Published

2023-09-23

How to Cite

Tovstik, T. M. (2023). Stationary reversibles processes MA and ARMA. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 10(3), 530–544. https://doi.org/10.21638/spbu01.2023.307

Issue

Section

Mathematics

Most read articles by the same author(s)