The problem of selfish parking
Abstract
В настоящей работе предлагается исследовать одну из моделей дискретного аналога задачи Реньи, известной под названием «задача о парковке». Пусть n, i - целые, n ≥ 0 и 0 ≤ i ≤ n - 1. На отрезок [0, n] будем помещать открытый интервал (i, i + 1), где i - случайная величина, с равной вероятностью принимающая значения 0, 1, 2,...,n - 1 для всех n ≥ 2. Если n < 2, то говорим, что интервал не помещается. После размещения первого интервала образуются два свободных отрезка [0, i] и [i + 1, n], которые заполняются интервалами единичной длины по тому же правилу, независимо друг от друга и т. д. По окончании процесса заполнения отрезка [0, n] единичными интервалами между двумя любыми соседними интервалами расстояние будет не больше 1. Пусть Xn обозначает количество разместившихся интервалов. В работе изучается асимптотическое поведение моментов случайной величины Xn. В отличие от классического случая для первых моментов удается установить точные выражения для моментов.
Downloads
References
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.