Energy dissipation during vibrations of non-uniform composite structures. 2. Method of solution
Abstract
Приводится описание метода численного решения уравнений затухающих колебаний неоднородных композитных структур. Для формирования системы алгебраических уравнений применяется метод Ритца с использованием многочленов Лежандра в качестве координатных функций. Сначала находятся вещественные решения. Для нахождения комплексных собственных частот системы в качестве их начальных значений используются найденные вещественные собственные частоты, а затем вычисляются комплексные частоты методом итераций третьего порядка. Обсуждаются результаты исследования сходимости численного решения дифференциальных уравнений движения слоистых неоднородных структур, выполненного на примере безопорной прямоугольной двухслойной пластины. Силовой слой пластины выполнен из однонаправленного углепластика, упруго-диссипативные свойства которого в рассматриваемом диапазоне частот и температур не зависят от частоты колебаний. На одну из наружных поверхностей силового слоя нанесен слой «жесткого» изотропного вязкоупругого полимера, характеризующегося температурно-частотной зависимостью вещественной части комплексного модуля упругости и коэффициента механических потерь. Оценка достоверности математической модели и метода численного решения, выполненная путем сопоставления расчетных и экспериментальных значений собственных частот и коэффициентов механических потерь для двух вариантов состава двухслойного безопорного стержня, продемонстрировала их хорошее согласование.
Downloads
References
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.