Relationship between the Udwadia—Kalaba equations and the generalized Lagrange and Maggi’s equations

Authors

  • Sergey A. Zegzhda St. Petersburg State University, Universitetskaya nab., 7-9, St. Petersburg, 199034, Russian Federation; Chechen State University, ul. A. Sheripova, 32, Grozny, 364051, Russian Federation;
  • Natalya V. Naumova St. Petersburg State University, Universitetskaya nab., 7-9, St. Petersburg, 199034, Russian Federation; Chechen State University, ul. A. Sheripova, 32, Grozny, 364051, Russian Federation;
  • Shervani Kh. Soltakhanov St. Petersburg State University, Universitetskaya nab., 7-9, St. Petersburg, 199034, Russian Federation; Chechen State University, ul. A. Sheripova, 32, Grozny, 364051, Russian Federation;
  • Mikhail P. Yushkov St. Petersburg State University, Universitetskaya nab., 7-9, St. Petersburg, 199034, Russian Federation; Chechen State University, ul. A. Sheripova, 32, Grozny, 364051, Russian Federation;

DOI:

https://doi.org/10.21638/11701/spbu01.2016.114

Abstract

In their paper “A new perspective on constrained motion” F. E. Udwadia and R. E. Kalaba offered a new form of matrix equations of motion for nonholonomic systems subject to linear nonholonomic second-order constraints. The obtained equations contain all the generalized coordinates of the mechanical system in question, and at the same time they do not contain the constraint reaction forces. This is an undoubted advantage of the equations presented, so the authors assume that “the equations of motion obtained in this paper appear to be the simplest and most comprehensive so far discovered”. To write these equations the authors apply a rather specific transformation proposed by Moore already in 1920 and developed by Penrose in 1955. In Russian literature it is said that in this case a pseudoinverse matrix is used. The present paper reveals that the equations obtained by those authors can be naturally derived from the generalized Lagrange and Maggi’s equations or when using a contravariant form of the equations of motion of a mechanical system subject to linear nonholonomic second-order constraints. It is noted that a similar technique for eliminating the reaction forces from differential equations is usually used in practical studying of motion of mechanical systems that are subject to holonomic and classical nonholonomic first-order constraints. As a result, we obtain the equations of motion containing only the generalized coordinates of a mechanical system, what corresponds to the equations of Udwadia—Kalaba form. Refs 7.

Downloads

Download data is not yet available.
 

References

Литература

1. Udwadia F.E., Kalaba R.E. A new perspective on constrained motion // Proceedings of the Royal Society. London. 1992. Vol. A439, N 1906. P. 407-410.

2. Moore E.H. On the reciprocal of the general algebraic matrix // Bidl. Am. math. Soc. 1920. Vol. 26. P. 394-395.

3. Penrose R. A generalized inverse of matrices // Proc. Camb. phil. Soc. 1955. Vol. 51. P. 406-413.

4. Зегжда С.А., Солтаханов Ш.Х., Юшков М.П. Неголономная механика. Теория и приложения. М.: Наука, Физматлит, 2009. 344 с.

5. Kitzka F. An example for the application of a nonholonomic constraint of 2nd order in particle mechanics // ZAMM. 1986. Vol. 66, N 7. S. 312-314.

6. Солтаханов Ш.Х., Юшков М.П. Уравнения движения одной неголономной системы при наличии связи второго порядка // Вестн. Ленингр. ун-та. 1991. Вып. 4, №22. С. 26-29.

7. Поляхов Н.Н. О дифференциальных принципах механики, получаемых из уравнений движения неголономных систем // Вестн. Ленингр. ун-та. 1974. Вып. 3, №13. С. 106-116.

References

1. Udwadia F.E., Kalaba R.E., “A new perspective on constrained motion”, Proceedings of the Royal Society A439(1906), 407–410 (London, 1992).

2. Moore E.H., “On the reciprocal of the general algebraic matrix”, Bidl. Am. math. Soc. 26, 394–395 (1920).

3. Penrose R., “A generalized inverse of matrices”, Proc. Camb. phil. Soc. 51, 406–413 (1955).

4. Zegzhda S.A., Soltakhanov Sh.Kh., Yushkov M.P., Nonholonomic mechanics. Theory and applications (Nauka, Fizmatlit, Moscow, 2009, 344 p.) [in Russian].

5. Kitzka F., “An example for the application of a nonholonomic constraint of 2nd order in particle mechanics”, ZAMM 66(7), 312–314 (1986).

6. Soltakhanov Sh.Kh., Yushkov M.P., “Equations of motion for a certain nonholonomic system in the presence of a 2nd order constraint”, Vestn. Leningr. Univ. (22), Issue 4, 26–29 (1991) [in Russian].

7. Polyakhov N.N., “On differential principles in mechanics obtained from the equations of motion for nonholonomic systems”, Vestn. Leningr. Univ. (13), Issue 3, 106–116 (1974) [in Russian].

Published

2020-10-19

How to Cite

Zegzhda, S. A., Naumova, N. V., Soltakhanov, S. K., & Yushkov, M. P. (2020). Relationship between the Udwadia—Kalaba equations and the generalized Lagrange and Maggi’s equations. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 3(1), 1. https://doi.org/10.21638/11701/spbu01.2016.114

Issue

Section

Mechanics

Most read articles by the same author(s)