Integrability by quadratures of the problem of rolling motion of a heavy homogeneous ball on a surface of revolution of the second order
DOI:
https://doi.org/10.21638/spbu01.2024.208Abstract
In this paper, we consider the problem of rolling of a heavy homogeneous ball on a perfectly rough surface of revolution. Usually, when considering this problem, it is convenient to specify explicitly the surface along which the center of the ball moves during rolling, instead of the surface along which the ball rolls. The surface on which the center of the ball moves is equidistant to the surface on which the ball is rolling. It is well known, that the considered problem is reduced to the integration the second order linear homogeneous differential equation. In this paper we assume, that the surface along which the center of the ball moves is a non - degenerate surface of revolution of the second order. Using the Kovacic algorithm we prove that the general solution of the corresponding linear differential equation can be found explicitly. This means, that in this case the problem of rolling of a ball on a surface of revolution can be integrated by quadratures.Keywords:
rolling without sliding, homogeneous ball, surface of revolution of the 2nd order, integrability by quadratures
Downloads
References
Литература
References
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.