Linear generalized Kalman — Bucy filter

Authors

  • Tatiana M. Tovstik St. Petersburg State University, Universitetskaya nab., 7–9, St. Petersburg, 199034, Russian Federation
  • Petr E. Tovstik St. Petersburg State University, Universitetskaya nab., 7–9, St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu01.2019.409

Abstract

The linear generalized Kalman — Bucy filter problem is studied. An observed process is a sum of a useful signal and a noise. A signal and a noise are independent stationary auto-regressive processes with orders exceeding 1. The filter estimates a signal by using an observed process. Two algorithms of filter are considered, recurrent and direct. In frames of the recurrent algorithm to find the next in turn estimation of a signal the current observation and some last previous filter estimations are used. The direct algorithm uses all previous observations directly. For the both algorithms the errors of estimation are found. The advantages and locks of both algorithms are discussed. Calculations at the recurrent algorithm does depend on time of observation. The direct algorithm is reduced to a linear algebraic system, order of that increases with a time. On the other side, the direct algorithm converges with growth of time in all cases, and the recurrent algorithm sometime may not converge. Numerical examples are given.

Keywords:

Kalman — Bucy filter, recurrent and direct algorithms, high order auto-regressive processes

Downloads

Download data is not yet available.
 

References

Литература

Колмогоров А.Н. Интерполирование и экстраполирование стационарных случайных процессов // Изв. АН СССР. Математика. 1941. №5. C. 3–14.

Wiener N. Extrapolation, interpolation and smoothing of stationary time-series. Cambridge, 1949. https://doi.org/10.7551/mitpress/2946.001.0001

Розанов Ю.А. Стационарные случайные процессы. М.: Наука, 1990.

Товстик Т.М. Стационарные случайные процессы с рациональными спектральными плотностями. СПб.: Изд-во С.-Петерб. ун-та, 2000.

Kalman R. E., Bucy R.S. New results in linear filtering and prediction theory // Journal of Basic Engineering. 1961. Vol. 83, no. 1. P. 95–108. https://doi.org/10.1115/1.3658902

Браммер К., Зиффлинг Г. Фильтр Калмана — Бьюси. М., 1982.

Ширяев А.Н. Вероятность — 2. М.: Изд-во МЦНМО, 2004.

Cheremensky A., Fomin V.N. Operator Approach to Linear Control Systems. Springer, 1996. https://doi.org/10.1007/978-94-009-0127-8

Simon D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley-Interscience, 2006. https://doi.org/10.1002/0470045345

Bozic S.M. Digital and Kalman filtering. Butterworth-Heinemann, 1994.

Граничин О.Н. Введение в методы стохастической оптимизации и оценивания. СПб.: Изд-во С.-Петерб. ун-та, 2003.

Chui Ch.K., Chen G. Kalman Filtering with Real-Time Applications. In: Springer Series in Information Sciences. Vol. 17. 4th ed. New York: Springer, 2009.

Товстик Т.М. Линейный фильтр Калмана-Бьюси с авторегрессионными сигналом и шумом // Вестн. С.-Петерб. ун-та. Математика. Механика. Астрономия. 2018. Т. 5(63). Вып. 3. С. 452–463. https://doi.org/10.21638/11701/spbu01.2018.309

Тovstik Т.М., Tovstik P.E., Shirinkina D.A. Linear generalized Kalman-Bucy filter // Ninth Int. Workshop on Simulation. Barselona, 2018.

Ширяев А.Н. Вероятность — 1. М.: Изд-во МЦНМО, 2004.

Yule G.U. On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers // Phil. Trans. 1927. Vol. A, 226. P. 267–298. https://doi.org/10.1098/rsta.1927.0007


References

Kolmogorov A.N., “Interpolation and extrapolation of stationary random processes”, Izv. AN USSR. Mathematics (5), 3–14 (1941). (In Russian)

Wiener N., Extrapolation, interpolation and smoothing of stationary time-series (Cambridge, 1949). https://doi.org/10.7551/mitpress/2946.001.0001

Rozanov Ju.A., Stationary random processes (Nauka Publ., Moscow, 1990). (In Russian)

Tovstik T.M., Stationary random processes with rational spectral densities (St. Petersburg, St. Petersburg Univ. Press, 2000). (In Russian)

Kalman R.E., Bucy R. S., “New results in linear filtering and prediction theory”, Trans. ASME, J. Basic Eng. 83(1), 95–108 (1961). https://doi.org/10.1115/1.3658902

Brammer K., Siffling G., Kalman — Bucy — Filter. Deterministische Beobachtung und Stochastische Filterung (Munchen, 1975).

Shiryaev A.N., Probability 2 (Springer-Verlag, New York, 2018).

Cheremensky A., Fomin V.N., Operator Approach to Linear Control Systems (Springer, 1996). https://doi.org/10.1007/978-94-009-0127-8

Simon D., Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches (Wiley-Interscience, 2006). https://doi.org/10.1002/0470045345

Bozic S.M., Digital and Kalman filtering (Butterworth-Heinemann, 1994).

Granichin O.N., Optimal filter of random processes (St. Petersburg, St. Petersburg Univ. Publ., 2013). (In Russian)

Chui Ch.K., Chen G., Kalman Filtering with Real-Time Applications, in: Springer Series in Information Sciences 17 (4th ed., Springer, New York, 2009).

Tovstik T.M., “Linear Kalman-Bucy Filter with Autoregressive Signal and noise”, Vestnik St. Petersburg University, Mathematics 51(3), 276–285 (2018). https://doi.org/10.3103/S1063454118030093

Тovstik Т.М., Tovstik P. E., Shirinkina D.A., “Linear generalized Kalman-Bucy filter”, Ninth Int. Workshop on Simulation, Barcelona (2018).

Shiryaev A.N., Probability 1 (3rd ed., New York, Springer-Verlag, 2016).

Yule G.U., “On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers”, Phil. Trans. A, 226, 267–298 (1927). https://doi.org/10.1098/rsta.1927.0007

Published

2019-11-28

How to Cite

Tovstik, T. M., & Tovstik, P. E. (2019). Linear generalized Kalman — Bucy filter. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 6(4), 636–645. https://doi.org/10.21638/11701/spbu01.2019.409

Issue

Section

Mathematics

Most read articles by the same author(s)

1 2 > >>